SVR.jl
SVR.jl performs Support Vector Regression (SVR) using libSVM library.
SVR.jl functions:
SVR.apredict
— MethodPredict based on a libSVM model
Methods:
SVR.apredict(y::AbstractVector{Float64}, x::AbstractArray{Float64}; kw...)
:/home/travis/.julia/packages/SVR/hERUd/src/SVRfunctions.jl:290
Arguments:
x::AbstractArray{Float64}
: array of independent variablesy::AbstractVector{Float64}
: vector of dependent variables
Return:
- predicted dependent variables
SVR.freemodel
— MethodFree a libSVM model
Methods:
SVR.freemodel(pmodel::SVR.svmmodel)
:/home/travis/.julia/packages/SVR/hERUd/src/SVRfunctions.jl:358
Arguments:
pmodel::SVR.svmmodel
: svm model
SVR.get_prediction_mask
— MethodGet prediction mask
Methods:
SVR.get_prediction_mask(ns::Number, ratio::Number; keepcases, debug)
:/home/travis/.julia/packages/SVR/hERUd/src/SVRfunctions.jl:247
Arguments:
ns::Number
: number of samplesratio::Number
: prediction ratio
Keywords:
debug
keepcases
Return:
- prediction mask
SVR.loadmodel
— MethodLoad a libSVM model
Methods:
SVR.loadmodel(filename::AbstractString)
:/home/travis/.julia/packages/SVR/hERUd/src/SVRfunctions.jl:321
Arguments:
filename::AbstractString
: input file name
Returns:
- SVM model
SVR.mapnodes
— MethodMethods:
SVR.mapnodes(x::AbstractArray)
:/home/travis/.julia/packages/SVR/hERUd/src/SVRlib.jl:63
Arguments:
x::AbstractArray
:
SVR.mapparam
— MethodMethods:
SVR.mapparam(; svm_type, kernel_type, degree, gamma, coef0, C, nu, epsilon, cache_size, tolerance, shrinking, probability, nr_weight, weight_label, weight)
:/home/travis/.julia/packages/SVR/hERUd/src/SVRlib.jl:23
Keywords:
C
: cost; penalty parameter of the error term [default=1.0
]cache_size
: size of the kernel cache [default=100.0
]coef0
: independent term in kernel function; important only in POLY and SIGMOND kernel types [default=0.0
]degree
: degree of the polynomial kernel [default=3
]epsilon
: epsilon for EPSILON_SVR model; defines an epsilon-tube within which no penalty is associated in the training loss function with points predicted within a distance epsilon from the actual value [default=1e-9
]gamma
: coefficient for RBF, POLY and SIGMOND kernel types [default=1.0
]kernel_type
: kernel type [default=RBF
]nr_weight
: [default=0
]nu
: upper bound on the fraction of training errors / lower bound of the fraction of support vectors; acceptable range (0, 1]; applied if NU_SVR model [default=0.5
]probability
: train to estimate probabilities [default=false
]shrinking
: apply shrinking heuristic [default=true
]svm_type
: SVM type [default=EPSILON_SVR
]tolerance
: tolerance; stopping criteria[default=0.001
]weight
: [default=Ptr{Cdouble}(0x0000000000000000)
]weight_label
: [default=Ptr{Cint}(0x0000000000000000)
]
Returns:
- parameter
SVR.predict
— MethodPredict based on a libSVM model
Methods:
SVR.predict(pmodel::SVR.svmmodel, x::AbstractArray{Float64})
:/home/travis/.julia/packages/SVR/hERUd/src/SVRfunctions.jl:69
Arguments:
pmodel::SVR.svmmodel
: the model that prediction is based onx::AbstractArray{Float64}
: array of independent variables
Return:
- predicted dependent variables
SVR.r2
— MethodCompute the coefficient of determination (r2)
Methods:
SVR.r2(x::AbstractVector, y::AbstractVector)
:/home/travis/.julia/packages/SVR/hERUd/src/SVRfunctions.jl:403
Arguments:
x::AbstractVector
: observed datay::AbstractVector
: predicted data
Returns:
- coefficient of determination (r2)
SVR.readlibsvmfile
— MethodRead a libSVM file
Methods:
SVR.readlibsvmfile(file::AbstractString)
:/home/travis/.julia/packages/SVR/hERUd/src/SVRfunctions.jl:377
Arguments:
file::AbstractString
: file name
Returns:
- array of independent variables
- vector of dependent variables
SVR.savemodel
— MethodSave a libSVM model
Methods:
SVR.savemodel(pmodel::SVR.svmmodel, filename::AbstractString)
:/home/travis/.julia/packages/SVR/hERUd/src/SVRfunctions.jl:343
Arguments:
filename::AbstractString
: output file namepmodel::SVR.svmmodel
: svm model
Dumps:
- file with saved model
SVR.test
— MethodTest SVR
SVR.train
— MethodTrain based on a libSVM model
Methods:
SVR.train(y::AbstractVector{Float64}, x::AbstractArray{Float64}; svm_type, kernel_type, degree, gamma, coef0, C, nu, epsilon, cache_size, tol, shrinking, probability, verbose)
:/home/travis/.julia/packages/SVR/hERUd/src/SVRfunctions.jl:32
Arguments:
x::AbstractArray{Float64}
: array of independent variablesy::AbstractVector{Float64}
: vector of dependent variables
Keywords:
C
: cost; penalty parameter of the error term [default=1.0
]cache_size
: size of the kernel cache [default=100.0
]coef0
: independent term in kernel function; important only in POLY and SIGMOND kernel types [default=0.0
]degree
: degree of the polynomial kernel [default=3
]epsilon
: epsilon in the EPSILON_SVR model; defines an epsilon-tube within which no penalty is associated in the training loss function with points predicted within a distance epsilon from the actual value [default=1e-9
]gamma
: coefficient for RBF, POLY and SIGMOND kernel types [default=1/size(x, 1)
]kernel_type
: kernel type [default=RBF
]nu
: upper bound on the fraction of training errors / lower bound of the fraction of support vectors; acceptable range (0, 1]; applied if NU_SVR model [default=0.5
]probability
: train to estimate probabilities [default=false
]shrinking
: apply shrinking heuristic [default=true
]svm_type
: SVM type [default=EPSILON_SVR
]tol
: tolerance of termination criterion [default=0.001
]verbose
: verbose output [default=false
]
Returns:
- SVM model