SVR.jl
SVR.jl performs Support Vector Regression (SVR) using libSVM library.
SVR.jl functions:
SVR.apredict — MethodPredict based on a libSVM model
Methods:
SVR.apredict(y::AbstractVector{Float64}, x::AbstractArray{Float64}; kw...):/home/travis/.julia/packages/SVR/hERUd/src/SVRfunctions.jl:290
Arguments:
x::AbstractArray{Float64}: array of independent variablesy::AbstractVector{Float64}: vector of dependent variables
Return:
- predicted dependent variables
SVR.freemodel — MethodFree a libSVM model
Methods:
SVR.freemodel(pmodel::SVR.svmmodel):/home/travis/.julia/packages/SVR/hERUd/src/SVRfunctions.jl:358
Arguments:
pmodel::SVR.svmmodel: svm model
SVR.get_prediction_mask — MethodGet prediction mask
Methods:
SVR.get_prediction_mask(ns::Number, ratio::Number; keepcases, debug):/home/travis/.julia/packages/SVR/hERUd/src/SVRfunctions.jl:247
Arguments:
ns::Number: number of samplesratio::Number: prediction ratio
Keywords:
debugkeepcases
Return:
- prediction mask
SVR.loadmodel — MethodLoad a libSVM model
Methods:
SVR.loadmodel(filename::AbstractString):/home/travis/.julia/packages/SVR/hERUd/src/SVRfunctions.jl:321
Arguments:
filename::AbstractString: input file name
Returns:
- SVM model
SVR.mapnodes — MethodMethods:
SVR.mapnodes(x::AbstractArray):/home/travis/.julia/packages/SVR/hERUd/src/SVRlib.jl:63
Arguments:
x::AbstractArray:
SVR.mapparam — MethodMethods:
SVR.mapparam(; svm_type, kernel_type, degree, gamma, coef0, C, nu, epsilon, cache_size, tolerance, shrinking, probability, nr_weight, weight_label, weight):/home/travis/.julia/packages/SVR/hERUd/src/SVRlib.jl:23
Keywords:
C: cost; penalty parameter of the error term [default=1.0]cache_size: size of the kernel cache [default=100.0]coef0: independent term in kernel function; important only in POLY and SIGMOND kernel types [default=0.0]degree: degree of the polynomial kernel [default=3]epsilon: epsilon for EPSILON_SVR model; defines an epsilon-tube within which no penalty is associated in the training loss function with points predicted within a distance epsilon from the actual value [default=1e-9]gamma: coefficient for RBF, POLY and SIGMOND kernel types [default=1.0]kernel_type: kernel type [default=RBF]nr_weight: [default=0]nu: upper bound on the fraction of training errors / lower bound of the fraction of support vectors; acceptable range (0, 1]; applied if NU_SVR model [default=0.5]probability: train to estimate probabilities [default=false]shrinking: apply shrinking heuristic [default=true]svm_type: SVM type [default=EPSILON_SVR]tolerance: tolerance; stopping criteria[default=0.001]weight: [default=Ptr{Cdouble}(0x0000000000000000)]weight_label: [default=Ptr{Cint}(0x0000000000000000)]
Returns:
- parameter
SVR.predict — MethodPredict based on a libSVM model
Methods:
SVR.predict(pmodel::SVR.svmmodel, x::AbstractArray{Float64}):/home/travis/.julia/packages/SVR/hERUd/src/SVRfunctions.jl:69
Arguments:
pmodel::SVR.svmmodel: the model that prediction is based onx::AbstractArray{Float64}: array of independent variables
Return:
- predicted dependent variables
SVR.r2 — MethodCompute the coefficient of determination (r2)
Methods:
SVR.r2(x::AbstractVector, y::AbstractVector):/home/travis/.julia/packages/SVR/hERUd/src/SVRfunctions.jl:403
Arguments:
x::AbstractVector: observed datay::AbstractVector: predicted data
Returns:
- coefficient of determination (r2)
SVR.readlibsvmfile — MethodRead a libSVM file
Methods:
SVR.readlibsvmfile(file::AbstractString):/home/travis/.julia/packages/SVR/hERUd/src/SVRfunctions.jl:377
Arguments:
file::AbstractString: file name
Returns:
- array of independent variables
- vector of dependent variables
SVR.savemodel — MethodSave a libSVM model
Methods:
SVR.savemodel(pmodel::SVR.svmmodel, filename::AbstractString):/home/travis/.julia/packages/SVR/hERUd/src/SVRfunctions.jl:343
Arguments:
filename::AbstractString: output file namepmodel::SVR.svmmodel: svm model
Dumps:
- file with saved model
SVR.test — MethodTest SVR
SVR.train — MethodTrain based on a libSVM model
Methods:
SVR.train(y::AbstractVector{Float64}, x::AbstractArray{Float64}; svm_type, kernel_type, degree, gamma, coef0, C, nu, epsilon, cache_size, tol, shrinking, probability, verbose):/home/travis/.julia/packages/SVR/hERUd/src/SVRfunctions.jl:32
Arguments:
x::AbstractArray{Float64}: array of independent variablesy::AbstractVector{Float64}: vector of dependent variables
Keywords:
C: cost; penalty parameter of the error term [default=1.0]cache_size: size of the kernel cache [default=100.0]coef0: independent term in kernel function; important only in POLY and SIGMOND kernel types [default=0.0]degree: degree of the polynomial kernel [default=3]epsilon: epsilon in the EPSILON_SVR model; defines an epsilon-tube within which no penalty is associated in the training loss function with points predicted within a distance epsilon from the actual value [default=1e-9]gamma: coefficient for RBF, POLY and SIGMOND kernel types [default=1/size(x, 1)]kernel_type: kernel type [default=RBF]nu: upper bound on the fraction of training errors / lower bound of the fraction of support vectors; acceptable range (0, 1]; applied if NU_SVR model [default=0.5]probability: train to estimate probabilities [default=false]shrinking: apply shrinking heuristic [default=true]svm_type: SVM type [default=EPSILON_SVR]tol: tolerance of termination criterion [default=0.001]verbose: verbose output [default=false]
Returns:
- SVM model