Mads.jl
Mads.jl functions:
Mads.MFlm
— MethodMatrix Factorization using Levenberg Marquardt
Methods:
Mads.MFlm(X::AbstractMatrix{T}, nk::Integer; method, log_W, log_H, retries, initW, initH, tolX, tolG, tolOF, tolOFcount, minOF, maxEval, maxIter, maxJacobians, lambda, lambda_mu, np_lambda, show_trace, quiet) where T<:Number
:/home/travis/build/madsjulia/Mads.jl/src/MadsBlindSourceSeparation.jl:136
Mads.MFlm(X::AbstractMatrix{T}, range::AbstractRange{Int64}; kw...) where T<:Number
:/home/travis/build/madsjulia/Mads.jl/src/MadsBlindSourceSeparation.jl:103
Arguments:
X::AbstractMatrix{T}
: matrix to factorizenk::Integer
: number of features to extractrange::AbstractRange{Int64}
Keywords:
initH
: initial H (feature) matrixinitW
: initial W (weight) matrixlambda
lambda_mu
log_H
: log-transform H (feature) matrix[default=false
]log_W
: log-transform W (weight) matrix [default=false
]maxEval
maxIter
maxJacobians
method
minOF
np_lambda
quiet
retries
: number of solution retries [default=1
]show_trace
tolG
: parameter space update tolerance [default=1e-6
]tolOF
: objective function update tolerance [default=1e-3
]tolOFcount
: number of Jacobian runs with small objective function change [default=5
]tolX
Returns:
- NMF results
Mads.NMFipopt
— FunctionNon-negative Matrix Factorization using JuMP/Ipopt
Methods:
Mads.NMFipopt(X::AbstractMatrix, nk::Integer)
:/home/travis/build/madsjulia/Mads.jl/src/MadsBlindSourceSeparation.jl:60
Mads.NMFipopt(X::AbstractMatrix, nk::Integer, retries::Integer; random, maxiter, maxguess, initW, initH, verbosity, quiet)
:/home/travis/build/madsjulia/Mads.jl/src/MadsBlindSourceSeparation.jl:60
Arguments:
X::AbstractMatrix
: matrix to factorizenk::Integer
: number of features to extractretries::Integer
: number of solution retries [default=1
]
Keywords:
initH
: initial H (feature) matrixinitW
: initial W (weight) matrixmaxguess
: guess about the maximum for the H (feature) matrix [default=1
]maxiter
: maximum number of iterations [default=100000
]quiet
: quiet [default=false
]random
: random initial guesses [default=false
]verbosity
: verbosity output level [default=0
]
Returns:
- NMF results
Mads.NMFm
— FunctionNon-negative Matrix Factorization using NMF
Methods:
Mads.NMFm(X::Array, nk::Integer)
:/home/travis/build/madsjulia/Mads.jl/src/MadsBlindSourceSeparation.jl:21
Mads.NMFm(X::Array, nk::Integer, retries::Integer; tol, maxiter)
:/home/travis/build/madsjulia/Mads.jl/src/MadsBlindSourceSeparation.jl:21
Arguments:
X::Array
: matrix to factorizenk::Integer
: number of features to extractretries::Integer
: number of solution retries [default=1
]
Keywords:
maxiter
: maximum number of iterations [default=10000
]tol
: solution tolerance [default=1.0e-9
]
Returns:
- NMF results
Mads.addkeyword!
— FunctionAdd a keyword
in a class
within the Mads dictionary madsdata
Methods:
Mads.addkeyword!(madsdata::AbstractDict, class::AbstractString, keyword::AbstractString)
:/home/travis/build/madsjulia/Mads.jl/src/MadsHelpers.jl:314
Mads.addkeyword!(madsdata::AbstractDict, keyword::AbstractString)
:/home/travis/build/madsjulia/Mads.jl/src/MadsHelpers.jl:310
Arguments:
class::AbstractString
: dictionary class; if not provided searches forkeyword
inProblem
classkeyword::AbstractString
: dictionary keymadsdata::AbstractDict
: MADS problem dictionary
Mads.addsource!
— FunctionAdd an additional contamination source
Methods:
Mads.addsource!(madsdata::AbstractDict)
:/home/travis/build/madsjulia/Mads.jl/src/MadsAnasol.jl:17
Mads.addsource!(madsdata::AbstractDict, sourceid::Int64; dict)
:/home/travis/build/madsjulia/Mads.jl/src/MadsAnasol.jl:17
Arguments:
madsdata::AbstractDict
: MADS problem dictionarysourceid::Int64
: source id [default=0
]
Keywords:
dict
Mads.addsourceparameters!
— MethodAdd contaminant source parameters
Methods:
Mads.addsourceparameters!(madsdata::AbstractDict)
:/home/travis/build/madsjulia/Mads.jl/src/MadsAnasol.jl:74
Arguments:
madsdata::AbstractDict
: MADS problem dictionary
Mads.allwellsoff!
— MethodTurn off all the wells in the MADS problem dictionary
Methods:
Mads.allwellsoff!(madsdata::AbstractDict)
:/home/travis/build/madsjulia/Mads.jl/src/MadsObservations.jl:618
Arguments:
madsdata::AbstractDict
: MADS problem dictionary
Mads.allwellson!
— MethodTurn on all the wells in the MADS problem dictionary
Methods:
Mads.allwellson!(madsdata::AbstractDict)
:/home/travis/build/madsjulia/Mads.jl/src/MadsObservations.jl:560
Arguments:
madsdata::AbstractDict
: MADS problem dictionary
Mads.amanzi
— FunctionExecute Amanzi external groundwater flow and transport simulator
Methods:
Mads.amanzi(filename::AbstractString)
:/home/travis/build/madsjulia/Mads.jl/src/MadsSimulators.jl:12
Mads.amanzi(filename::AbstractString, nproc::Int64)
:/home/travis/build/madsjulia/Mads.jl/src/MadsSimulators.jl:12
Mads.amanzi(filename::AbstractString, nproc::Int64, quiet::Bool)
:/home/travis/build/madsjulia/Mads.jl/src/MadsSimulators.jl:12
Mads.amanzi(filename::AbstractString, nproc::Int64, quiet::Bool, observation_filename::AbstractString)
:/home/travis/build/madsjulia/Mads.jl/src/MadsSimulators.jl:12
Mads.amanzi(filename::AbstractString, nproc::Int64, quiet::Bool, observation_filename::AbstractString, setup::AbstractString; amanzi_exe)
:/home/travis/build/madsjulia/Mads.jl/src/MadsSimulators.jl:12
Arguments:
filename::AbstractString
: amanzi input file namenproc::Int64
: number of processor to be used by Amanzi [default=Mads.nprocs_per_task_default
]observation_filename::AbstractString
: Amanzi observation file name [default="observations.out"
]quiet::Bool
: suppress output [default=Mads.quiet
]setup::AbstractString
: bash script to setup Amanzi environmental variables [default="source-amanzi-setup"
]
Keywords:
amanzi_exe
: full path to the Amanzi executable
Mads.amanzi_output_parser
— FunctionParse Amanzi output provided in an external file (filename
)
Methods:
Mads.amanzi_output_parser()
:/home/travis/build/madsjulia/Mads.jl/src/MadsParsers.jl:20
Mads.amanzi_output_parser(filename::AbstractString)
:/home/travis/build/madsjulia/Mads.jl/src/MadsParsers.jl:20
Arguments:
filename::AbstractString
: external file name [default="observations.out"
]
Returns:
- dictionary with model observations following MADS requirements
Example:
Mads.amanzi_output_parser()
Mads.amanzi_output_parser("observations.out")
Mads.asinetransform
— FunctionArcsine transformation of model parameters
Methods:
Mads.asinetransform(madsdata::AbstractDict, params::AbstractVector)
:/home/travis/build/madsjulia/Mads.jl/src/MadsSineTransformations.jl:1
Mads.asinetransform(params::AbstractVector, lowerbounds::AbstractVector, upperbounds::AbstractVector, indexlogtransformed::AbstractVector)
:/home/travis/build/madsjulia/Mads.jl/src/MadsSineTransformations.jl:11
Arguments:
indexlogtransformed::AbstractVector
: index vector of log-transformed parameterslowerbounds::AbstractVector
: lower boundsmadsdata::AbstractDict
: MADS problem dictionaryparams::AbstractVector
: model parametersupperbounds::AbstractVector
: upper bounds
Returns:
- Arcsine transformation of model parameters
Mads.bigdt
— MethodPerform Bayesian Information Gap Decision Theory (BIG-DT) analysis
Methods:
Mads.bigdt(madsdata::AbstractDict, nummodelruns::Int64; numhorizons, maxHorizon, numlikelihoods)
:/home/travis/build/madsjulia/Mads.jl/src/MadsBayesInfoGap.jl:121
Arguments:
madsdata::AbstractDict
: MADS problem dictionarynummodelruns::Int64
: number of model runs
Keywords:
maxHorizon
: maximum info-gap horizons of uncertainty [default=3
]numhorizons
: number of info-gap horizons of uncertainty [default=100
]numlikelihoods
: number of Bayesian likelihoods [default=25
]
Returns:
- dictionary with BIG-DT results
Mads.boundparameters!
— FunctionBound model parameters based on their ranges
Methods:
Mads.boundparameters!(madsdata::AbstractDict, pardict::AbstractDict)
:/home/travis/build/madsjulia/Mads.jl/src/MadsParameters.jl:817
Mads.boundparameters!(madsdata::AbstractDict, parvec::AbstractVector)
:/home/travis/build/madsjulia/Mads.jl/src/MadsParameters.jl:805
Arguments:
madsdata::AbstractDict
: MADS problem dictionarypardict::AbstractDict
: Parameter dictionaryparvec::AbstractVector
: Parameter vector
Mads.calibrate
— MethodCalibrate Mads model using a constrained Levenberg-Marquardt technique
Mads.calibrate(madsdata; tolX=1e-3, tolG=1e-6, maxEval=1000, maxIter=100, maxJacobians=100, lambda=100.0, lambda_mu=10.0, np_lambda=10, show_trace=false, usenaive=false)
Methods:
Mads.calibrate(madsdata::AbstractDict; tolX, tolG, tolOF, tolOFcount, minOF, maxEval, maxIter, maxJacobians, lambda, lambda_mu, np_lambda, show_trace, quiet, usenaive, save_results, localsa, parallel_optimization)
:/home/travis/build/madsjulia/Mads.jl/src/MadsCalibrate.jl:195
Arguments:
madsdata::AbstractDict
: MADS problem dictionary
Keywords:
lambda
: initial Levenberg-Marquardt lambda [default=100.0
]lambda_mu
: lambda multiplication factor [default=10.0
]localsa
: perform local sensitivity analysis [default=false
]maxEval
: maximum number of model evaluations [default=1000
]maxIter
: maximum number of optimization iterations [default=100
]maxJacobians
: maximum number of Jacobian solves [default=100
]minOF
: objective function update tolerance [default=1e-3
]np_lambda
: number of parallel lambda solves [default=10
]parallel_optimization
quiet
save_results
: save intermediate results [default=true
]show_trace
: shows solution trace [default=false
]tolG
: parameter space update tolerance [default=1e-6
]tolOF
: objective function update tolerance [default=1e-3
]tolOFcount
: number of Jacobian runs with small objective function change [default=5
]tolX
: parameter space tolerance [default=1e-4
]usenaive
: use naive Levenberg-Marquardt solver [default=false
]
Returns:
- model parameter dictionary with the optimal values at the minimum
- optimization algorithm results (e.g. results.minimizer)
Mads.calibraterandom
— FunctionCalibrate with random initial guesses
Methods:
Mads.calibraterandom(madsdata::AbstractDict)
:/home/travis/build/madsjulia/Mads.jl/src/MadsCalibrate.jl:43
Mads.calibraterandom(madsdata::AbstractDict, numberofsamples::Integer; tolX, tolG, tolOF, tolOFcount, minOF, maxEval, maxIter, maxJacobians, lambda, lambda_mu, np_lambda, show_trace, usenaive, seed, rng, quiet, all, save_results, first_init)
:/home/travis/build/madsjulia/Mads.jl/src/MadsCalibrate.jl:43
Arguments:
madsdata::AbstractDict
: MADS problem dictionarynumberofsamples::Integer
: number of random initial samples [default=1
]
Keywords:
all
: all model results are returned [default=false
]first_init
lambda
: initial Levenberg-Marquardt lambda [default=100.0
]lambda_mu
: lambda multiplication factor [default=10.0
]maxEval
: maximum number of model evaluations [default=1000
]maxIter
: maximum number of optimization iterations [default=100
]maxJacobians
: maximum number of Jacobian solves [default=100
]minOF
np_lambda
: number of parallel lambda solves [default=10
]quiet
: [default=true
]rng
save_results
: save intermediate results [default=true
]seed
: random seed [default=0
]show_trace
: shows solution trace [default=false
]tolG
: parameter space update tolerance [default=1e-6
]tolOF
: objective function update tolerance [default=1e-3
]tolOFcount
: number of Jacobian runs with small objective function change [default=5
]tolX
: parameter space tolerance [default=1e-4
]usenaive
: use naive Levenberg-Marquardt solver [default=false
]
Returns:
- model parameter dictionary with the optimal values at the minimum
- optimization algorithm results (e.g. bestresult[2].minimizer)
Example:
Mads.calibraterandom(madsdata; tolX=1e-3, tolG=1e-6, maxEval=1000, maxIter=100, maxJacobians=100, lambda=100.0, lambda_mu=10.0, np_lambda=10, show_trace=false, usenaive=false)
Mads.calibraterandom(madsdata, numberofsamples; tolX=1e-3, tolG=1e-6, maxEval=1000, maxIter=100, maxJacobians=100, lambda=100.0, lambda_mu=10.0, np_lambda=10, show_trace=false, usenaive=false)
Mads.calibraterandom_parallel
— FunctionCalibrate with random initial guesses in parallel
Methods:
Mads.calibraterandom_parallel(madsdata::AbstractDict)
:/home/travis/build/madsjulia/Mads.jl/src/MadsCalibrate.jl:119
Mads.calibraterandom_parallel(madsdata::AbstractDict, numberofsamples::Integer; tolX, tolG, tolOF, tolOFcount, minOF, maxEval, maxIter, maxJacobians, lambda, lambda_mu, np_lambda, show_trace, usenaive, seed, rng, quiet, save_results, first_init, localsa, all_results)
:/home/travis/build/madsjulia/Mads.jl/src/MadsCalibrate.jl:119
Arguments:
madsdata::AbstractDict
: MADS problem dictionarynumberofsamples::Integer
: number of random initial samples [default=1
]
Keywords:
all_results
first_init
lambda
: initial Levenberg-Marquardt lambda [default=100.0
]lambda_mu
: lambda multiplication factor [default=10.0
]localsa
: perform local sensitivity analysis [default=false
]maxEval
: maximum number of model evaluations [default=1000
]maxIter
: maximum number of optimization iterations [default=100
]maxJacobians
: maximum number of Jacobian solves [default=100
]minOF
np_lambda
: number of parallel lambda solves [default=10
]quiet
: suppress output [default=true
]rng
save_results
: save intermediate results [default=true
]seed
: random seed [default=0
]show_trace
: shows solution trace [default=false
]tolG
: parameter space update tolerance [default=1e-6
]tolOF
: objective function update tolerance [default=1e-3
]tolOFcount
: number of Jacobian runs with small objective function change [default=5
]tolX
: parameter space tolerance [default=1e-4
]usenaive
: use naive Levenberg-Marquardt solver [default=false
]
Returns:
- vector with all objective function values
- boolean vector (converged/not converged)
- array with estimate model parameters
Mads.captureoff
— MethodMake MADS not capture
Methods:
Mads.captureoff()
:/home/travis/build/madsjulia/Mads.jl/src/MadsHelpers.jl:148
Mads.captureon
— MethodMake MADS capture
Methods:
Mads.captureon()
:/home/travis/build/madsjulia/Mads.jl/src/MadsHelpers.jl:139
Mads.checkmodeloutputdirs
— MethodCheck the directories where model outputs should be saved for MADS
Methods:
Mads.checkmodeloutputdirs(madsdata::AbstractDict)
:/home/travis/build/madsjulia/Mads.jl/src/MadsIO.jl:766
Arguments:
madsdata::AbstractDict
: MADS problem dictionary
Returns:
- true or false
Mads.checknodedir
— FunctionCheck if a directory is readable
Methods:
Mads.checknodedir(dir::AbstractString)
:/home/travis/build/madsjulia/Mads.jl/src/MadsExecute.jl:10
Mads.checknodedir(dir::AbstractString, waittime::Float64)
:/home/travis/build/madsjulia/Mads.jl/src/MadsExecute.jl:10
Mads.checknodedir(node::AbstractString, dir::AbstractString)
:/home/travis/build/madsjulia/Mads.jl/src/MadsExecute.jl:1
Mads.checknodedir(node::AbstractString, dir::AbstractString, waittime::Float64)
:/home/travis/build/madsjulia/Mads.jl/src/MadsExecute.jl:1
Arguments:
dir::AbstractString
: directorynode::AbstractString
: computational node name (e.g.madsmax
,wf03
, or127.0.0.1
)waittime::Float64
: wait time in seconds [default=10
]
Returns:
true
if the directory is readable,false
otherwise
Mads.checkobservationranges
— MethodCheck parameter ranges for model parameters
Methods:
Mads.checkobservationranges(madsdata::AbstractDict)
:/home/travis/build/madsjulia/Mads.jl/src/MadsObservations.jl:811
Arguments:
madsdata::AbstractDict
: MADS problem dictionary
Mads.checkout
— FunctionCheckout (pull) the latest version of Mads modules
Methods:
Mads.checkout()
:/home/travis/build/madsjulia/Mads.jl/src/MadsModules.jl:107
Mads.checkout(modulename::AbstractString; git, master, force, pull, required, all)
:/home/travis/build/madsjulia/Mads.jl/src/MadsModules.jl:107
Arguments:
modulename::AbstractString
: module name
Keywords:
all
: whether to checkout all the modules [default=false
]force
: whether to overwrite local changes when checkout [default=false
]git
: whether to use "git checkout" [default=true
]master
: whether on master branch [default=false
]pull
: whether to run "git pull" [default=true
]required
: whether only checkout Mads.required modules [default=false
]
Mads.checkparameterranges
— MethodCheck parameter ranges for model parameters
Methods:
Mads.checkparameterranges(madsdata::AbstractDict)
:/home/travis/build/madsjulia/Mads.jl/src/MadsParameters.jl:741
Arguments:
madsdata::AbstractDict
: MADS problem dictionary
Mads.cleancoverage
— MethodRemove Mads coverage files
Methods:
Mads.cleancoverage()
:/home/travis/build/madsjulia/Mads.jl/src/MadsTest.jl:22
Mads.cmadsins_obs
— MethodCall C MADS ins_obs() function from MADS dynamic library
Methods:
Mads.cmadsins_obs(obsid::AbstractVector, instructionfilename::AbstractString, inputfilename::AbstractString)
:/home/travis/build/madsjulia/Mads.jl/src/MadsCMads.jl:38
Arguments:
inputfilename::AbstractString
: input file nameinstructionfilename::AbstractString
: instruction file nameobsid::AbstractVector
: observation id
Return:
- observations
Mads.commit
— FunctionCommit the latest version of Mads modules in the repository
Methods:
Mads.commit(commitmsg::AbstractString)
:/home/travis/build/madsjulia/Mads.jl/src/MadsModules.jl:255
Mads.commit(commitmsg::AbstractString, modulename::AbstractString)
:/home/travis/build/madsjulia/Mads.jl/src/MadsModules.jl:255
Arguments:
commitmsg::AbstractString
: commit messagemodulename::AbstractString
: module name
Mads.computemass
— FunctionCompute injected/reduced contaminant mass (for a given set of mads input files when "path" is provided)
Methods:
Mads.computemass(madsdata::AbstractDict; time)
:/home/travis/build/madsjulia/Mads.jl/src/MadsAnasol.jl:463
Mads.computemass(madsfiles::Union{Regex, String}; time, path)
:/home/travis/build/madsjulia/Mads.jl/src/MadsAnasol.jl:490
Arguments:
madsdata::AbstractDict
: MADS problem dictionarymadsfiles::Union{Regex, String}
: matching pattern for Mads input files (string or regular expression accepted)
Keywords:
path
: search directory for the mads input files [default="."
]time
: computational time [default=0
]
Returns:
- array with all the lambda values
- array with associated total injected mass
- array with associated total reduced mass
Example:
Mads.computemass(madsfiles; time=0, path=".")
Mads.computeparametersensitities
— MethodCompute sensitivities for each model parameter; averaging the sensitivity indices over the entire observation range
Methods:
Mads.computeparametersensitities(madsdata::AbstractDict, saresults::AbstractDict)
:/home/travis/build/madsjulia/Mads.jl/src/MadsSensitivityAnalysis.jl:867
Arguments:
madsdata::AbstractDict
: MADS problem dictionarysaresults::AbstractDict
: dictionary with sensitivity analysis results
Mads.contamination
— MethodCompute concentration for a point in space and time (x,y,z,t)
Methods:
Mads.contamination(wellx::Number, welly::Number, wellz::Number, n::Number, lambda::Number, theta::Number, vx::Number, vy::Number, vz::Number, ax::Number, ay::Number, az::Number, H::Number, x::Number, y::Number, z::Number, dx::Number, dy::Number, dz::Number, f::Number, t0::Number, t1::Number, t::AbstractVector, anasolfunction::Function)
:/home/travis/build/madsjulia/Mads.jl/src/MadsAnasol.jl:433
Arguments:
H::Number
: Hurst coefficient for Fractional Brownian dispersionanasolfunction::Function
ax::Number
: dispersivity in X direction (longitudinal)ay::Number
: dispersivity in Y direction (transverse horizontal)az::Number
: dispersivity in Y direction (transverse vertical)dx::Number
: source size (extent) in X directiondy::Number
: source size (extent) in Y directiondz::Number
: source size (extent) in Z directionf::Number
: source mass fluxlambda::Number
: first-order reaction raten::Number
: porosityt0::Number
: source starting timet1::Number
: source termination timet::AbstractVector
: vector of times to compute concentration at the observation pointtheta::Number
: groundwater flow directionvx::Number
: advective transport velocity in X directionvy::Number
: advective transport velocity in Y directionvz::Number
: advective transport velocity in Z directionwellx::Number
: observation point (well) X coordinatewelly::Number
: observation point (well) Y coordinatewellz::Number
: observation point (well) Z coordinatex::Number
: X coordinate of contaminant source locationy::Number
: Y coordinate of contaminant source locationz::Number
: Z coordinate of contaminant source location
Returns:
- a vector of predicted concentration at (wellx, welly, wellz, t)
Mads.copyaquifer2sourceparameters!
— MethodCopy aquifer parameters to become contaminant source parameters
Methods:
Mads.copyaquifer2sourceparameters!(madsdata::AbstractDict)
:/home/travis/build/madsjulia/Mads.jl/src/MadsAnasol.jl:113
Arguments:
madsdata::AbstractDict
: MADS problem dictionary
Mads.copyright
— MethodProduce MADS copyright information
Methods:
Mads.copyright()
:/home/travis/build/madsjulia/Mads.jl/src/MadsHelp.jl:44
Mads.create_tests_off
— MethodTurn off the generation of MADS tests (default)
Methods:
Mads.create_tests_off()
:/home/travis/build/madsjulia/Mads.jl/src/MadsHelpers.jl:193
Mads.create_tests_on
— MethodTurn on the generation of MADS tests (dangerous)
Methods:
Mads.create_tests_on()
:/home/travis/build/madsjulia/Mads.jl/src/MadsHelpers.jl:184
Mads.createobservations
— FunctionCreate Mads dictionary of observations and instruction file
Methods:
Mads.createobservations(nrow::Int64)
:/home/travis/build/madsjulia/Mads.jl/src/MadsCreate.jl:25
Mads.createobservations(nrow::Int64, ncol::Int64; obstring, pretext, prestring, poststring, filename)
:/home/travis/build/madsjulia/Mads.jl/src/MadsCreate.jl:25
Mads.createobservations(obs::AbstractMatrix; key, weight, time)
:/home/travis/build/madsjulia/Mads.jl/src/MadsCreate.jl:80
Mads.createobservations(obs::AbstractVector; key, weight, time, min, max, minorig, maxorig, dist, distribution)
:/home/travis/build/madsjulia/Mads.jl/src/MadsCreate.jl:43
Arguments:
ncol::Int64
: number of columns [default 1]nrow::Int64
: number of rowsobs::AbstractMatrix
obs::AbstractVector
Keywords:
dist
distribution
filename
: file namekey
max
maxorig
min
minorig
obstring
: observation stringpoststring
: post instruction file stringprestring
: pre instruction file stringpretext
: preamble instructionstime
weight
)
Returns:
- observation dictionary
Mads.createobservations!
— FunctionCreate observations in the MADS problem dictionary based on time
and observation
vectors
Methods:
Mads.createobservations!(madsdata::AbstractDict, observation::AbstractDict; logtransform, weight_type, weight)
:/home/travis/build/madsjulia/Mads.jl/src/MadsObservations.jl:499
Mads.createobservations!(madsdata::AbstractDict, time::AbstractVector, observation::AbstractVector; logtransform, weight_type, weight)
:/home/travis/build/madsjulia/Mads.jl/src/MadsObservations.jl:455
Mads.createobservations!(md::AbstractDict, obs::AbstractVecOrMat; kw...)
:/home/travis/build/madsjulia/Mads.jl/src/MadsCreate.jl:115
Arguments:
madsdata::AbstractDict
: MADS problem dictionarymd::AbstractDict
obs::AbstractVecOrMat
observation::AbstractDict
: dictionary of observationsobservation::AbstractVector
: dictionary of observationstime::AbstractVector
: vector of observation times
Keywords:
logtransform
: log transform observations [default=false
]weight
: weight value [default=1
]weight_type
: weight type [default=constant
]
Mads.createproblem
— FunctionCreate a new Mads problem where the observation targets are computed based on the model predictions
Methods:
Mads.createproblem(in::Integer, out::Integer, f::Union{AbstractString, Function}; kw...)
:/home/travis/build/madsjulia/Mads.jl/src/MadsCreate.jl:223
Mads.createproblem(infilename::AbstractString, outfilename::AbstractString)
:/home/travis/build/madsjulia/Mads.jl/src/MadsCreate.jl:237
Mads.createproblem(madsdata::AbstractDict, outfilename::AbstractString)
:/home/travis/build/madsjulia/Mads.jl/src/MadsCreate.jl:262
Mads.createproblem(madsdata::AbstractDict, predictions::AbstractDict)
:/home/travis/build/madsjulia/Mads.jl/src/MadsCreate.jl:273
Mads.createproblem(madsdata::AbstractDict, predictions::AbstractDict, outfilename::AbstractString)
:/home/travis/build/madsjulia/Mads.jl/src/MadsCreate.jl:268
Mads.createproblem(param::AbstractVector, obs::AbstractVecOrMat, f::Union{AbstractString, Function, Symbol}; problemname, paramkey, paramname, paramplotname, paramtype, parammin, parammax, paramminorig, parammaxorig, paramdist, distribution, expressions, paramlog, obskey, obsweight, obstime, obsmin, obsmax, obsminorig, obsmaxorig, obsdist)
:/home/travis/build/madsjulia/Mads.jl/src/MadsCreate.jl:227
Mads.createproblem(paramfile::AbstractString, obsfile::AbstractString, f::Union{AbstractString, Function}; kw...)
:/home/travis/build/madsjulia/Mads.jl/src/MadsCreate.jl:211
Arguments:
f::Union{AbstractString, Function, Symbol}
f::Union{AbstractString, Function}
in::Integer
infilename::AbstractString
: input Mads filemadsdata::AbstractDict
: MADS problem dictionaryobs::AbstractVecOrMat
obsfile::AbstractString
out::Integer
outfilename::AbstractString
: output Mads fileparam::AbstractVector
paramfile::AbstractString
predictions::AbstractDict
: dictionary of model predictions
Keywords:
distribution
expressions
obsdist
obskey
obsmax
obsmaxorig
obsmin
obsminorig
obstime
obsweight
paramdist
paramkey
paramlog
parammax
parammaxorig
parammin
paramminorig
paramname
paramplotname
paramtype
problemname
Returns:
- new MADS problem dictionary
Mads.createtempdir
— MethodCreate temporary directory
Methods:
Mads.createtempdir(tempdirname::AbstractString)
:/home/travis/build/madsjulia/Mads.jl/src/MadsIO.jl:1449
Arguments:
tempdirname::AbstractString
: temporary directory name
Mads.deleteNaN!
— MethodDelete rows with NaN in a dataframe df
Methods:
Mads.deleteNaN!(df::DataFrames.DataFrame)
:/home/travis/build/madsjulia/Mads.jl/src/MadsSensitivityAnalysis.jl:1093
Arguments:
df::DataFrames.DataFrame
: dataframe
Mads.deletekeyword!
— FunctionDelete a keyword
in a class
within the Mads dictionary madsdata
Methods:
Mads.deletekeyword!(madsdata::AbstractDict, class::AbstractString, keyword::AbstractString)
:/home/travis/build/madsjulia/Mads.jl/src/MadsHelpers.jl:343
Mads.deletekeyword!(madsdata::AbstractDict, keyword::AbstractString)
:/home/travis/build/madsjulia/Mads.jl/src/MadsHelpers.jl:337
Arguments:
class::AbstractString
: dictionary class; if not provided searches forkeyword
inProblem
classkeyword::AbstractString
: dictionary keymadsdata::AbstractDict
: MADS problem dictionary
Mads.deleteoffwells!
— MethodDelete all wells marked as being off in the MADS problem dictionary
Methods:
Mads.welloff!(madsdata::AbstractDict, wellname::AbstractString)
:/home/travis/build/madsjulia/Mads.jl/src/MadsObservations.jl:632
Arguments:
madsdata::AbstractDict
: MADS problem dictionarywellname::AbstractString
: name of the well to be turned off
Mads.deletetimes!
— MethodDelete all times in the MADS problem dictionary in a given list.
Methods:
Mads.welloff!(madsdata::AbstractDict, wellname::AbstractString)
:/home/travis/build/madsjulia/Mads.jl/src/MadsObservations.jl:632
Arguments:
madsdata::AbstractDict
: MADS problem dictionarywellname::AbstractString
: name of the well to be turned off
Mads.dependents
— FunctionLists module dependents on a module (Mads by default)
Methods:
Mads.dependents()
:/home/travis/build/madsjulia/Mads.jl/src/MadsModules.jl:71
Mads.dependents(modulename::AbstractString)
:/home/travis/build/madsjulia/Mads.jl/src/MadsModules.jl:71
Mads.dependents(modulename::AbstractString, filter::Bool)
:/home/travis/build/madsjulia/Mads.jl/src/MadsModules.jl:71
Arguments:
filter::Bool
: whether to filter modules [default=false
]modulename::AbstractString
: module name [default="Mads"
]
Returns:
- modules that are dependents of the input module
Mads.diff
— FunctionDiff the latest version of Mads modules in the repository
Methods:
Mads.diff()
:/home/travis/build/madsjulia/Mads.jl/src/MadsModules.jl:198
Mads.diff(modulename::AbstractString)
:/home/travis/build/madsjulia/Mads.jl/src/MadsModules.jl:198
Arguments:
modulename::AbstractString
: module name
Mads.documentation_create
— FunctionCreate web documentation
Methods:
Mads.documentation_create()
:/home/travis/build/madsjulia/Mads.jl/src/MadsPublish.jl:9
Mads.documentation_create(modules_doc)
:/home/travis/build/madsjulia/Mads.jl/src/MadsPublish.jl:9
Mads.documentation_create(modules_doc, modules_load)
:/home/travis/build/madsjulia/Mads.jl/src/MadsPublish.jl:9
Arguments:
modules_doc
modules_load
Mads.documentation_deploy
— MethodCreate web documentation
Methods:
Mads.documentation_deploy(; deploy_config)
:/home/travis/build/madsjulia/Mads.jl/src/MadsPublish.jl:40
Keywords:
deploy_config
Mads.dumpasciifile
— MethodDump ASCII file
Methods:
Mads.dumpasciifile(filename::AbstractString, data)
:/home/travis/build/madsjulia/Mads.jl/src/MadsASCII.jl:29
Arguments:
data
: data to dumpfilename::AbstractString
: ASCII file name
Dumps:
- ASCII file with the name in "filename"
Mads.dumpjsonfile
— MethodDump a JSON file
Methods:
Mads.dumpjsonfile(filename::AbstractString, data)
:/home/travis/build/madsjulia/Mads.jl/src/MadsJSON.jl:38
Arguments:
data
: data to dumpfilename::AbstractString
: JSON file name
Dumps:
- JSON file with the name in "filename"
Mads.dumpwelldata
— MethodDump well data from MADS problem dictionary into a ASCII file
Methods:
Mads.dumpwelldata(madsdata::AbstractDict, filename::AbstractString)
:/home/travis/build/madsjulia/Mads.jl/src/MadsIO.jl:1315
Arguments:
filename::AbstractString
: output file namemadsdata::AbstractDict
: MADS problem dictionary
Dumps:
filename
: a ASCII file
Mads.dumpyamlfile
— MethodDump YAML file
Methods:
Mads.dumpyamlfile(filename::AbstractString, data)
:/home/travis/build/madsjulia/Mads.jl/src/MadsYAML.jl:29
Arguments:
data
: YAML datafilename::AbstractString
: output file name
Mads.dumpyamlmadsfile
— MethodDump YAML Mads file
Methods:
Mads.dumpyamlmadsfile(madsdata::AbstractDict, filename::AbstractString)
:/home/travis/build/madsjulia/Mads.jl/src/MadsYAML.jl:41
Arguments:
filename::AbstractString
: output file namemadsdata::AbstractDict
: MADS problem dictionary
Mads.efast
— MethodSensitivity analysis using Saltelli's extended Fourier Amplitude Sensitivity Testing (eFAST) method
Methods:
Mads.efast(md::AbstractDict; N, M, gamma, seed, checkpointfrequency, save, load, restartdir, restart, rng)
:/home/travis/build/madsjulia/Mads.jl/src/MadsSensitivityAnalysis.jl:1136
Arguments:
md::AbstractDict
: MADS problem dictionary
Keywords:
M
: maximum number of harmonics [default=6
]N
: number of samples [default=100
]checkpointfrequency
: check point frequency [default=N
]gamma
: multiplication factor (Saltelli 1999 recommends gamma = 2 or 4) [default=4
]load
restart
: save restart information [default=false
]restartdir
: directory where files will be stored containing model results for the efast simulation restarts [default="efastcheckpoints"
]rng
save
seed
: random seed [default=0
]
Mads.emceesampling
— FunctionBayesian sampling with Goodman & Weare's Affine Invariant Markov chain Monte Carlo (MCMC) Ensemble sampler (aka Emcee)
Methods:
Mads.emceesampling(madsdata::AbstractDict, p0::Array; numwalkers, nsteps, burnin, thinning, seed, weightfactor, rng, distributed_function)
:/home/travis/build/madsjulia/Mads.jl/src/MadsMonteCarlo.jl:47
Mads.emceesampling(madsdata::AbstractDict; numwalkers, sigma, seed, rng, kw...)
:/home/travis/build/madsjulia/Mads.jl/src/MadsMonteCarlo.jl:24
Arguments:
madsdata::AbstractDict
: MADS problem dictionaryp0::Array
: initial parameters (matrix of size (number of parameters, number of walkers) or (length(Mads.getoptparamkeys(madsdata)), numwalkers))
Keywords:
burnin
: number of initial realizations before the MCMC are recorded [default=10
]distributed_function
nsteps
: number of final realizations in the chain [default=100
]numwalkers
: number of walkers (if in parallel this can be the number of available processors; in general, the higher the number of walkers, the better the results and computational time [default=10
]rng
seed
: random seed [default=0
]sigma
: a standard deviation parameter used to initialize the walkers [default=0.01
]thinning
: removal of anythinning
realization [default=1
]weightfactor
: weight factor [default=1.0
]
Returns:
- MCMC chain
- log likelihoods of the final samples in the chain
Examples:
Mads.emceesampling(madsdata; numwalkers=10, nsteps=100, burnin=100, thinning=1, seed=2016, sigma=0.01)
Mads.emceesampling(madsdata, p0; numwalkers=10, nsteps=100, burnin=10, thinning=1, seed=2016)
Mads.estimationerror
— FunctionEstimate kriging error
Methods:
Mads.estimationerror(w::AbstractVector, covmat::AbstractMatrix, covvec::AbstractVector, cov0::Number)
:/home/travis/build/madsjulia/Mads.jl/src/MadsKriging.jl:205
Mads.estimationerror(w::AbstractVector, x0::AbstractVector, X::AbstractMatrix, covfn::Function)
:/home/travis/build/madsjulia/Mads.jl/src/MadsKriging.jl:198
Arguments:
X::AbstractMatrix
: observation matrixcov0::Number
: zero-separation covariancecovfn::Function
covmat::AbstractMatrix
: covariance matrixcovvec::AbstractVector
: covariance vectorw::AbstractVector
: kriging weightsx0::AbstractVector
: estimated locations
Returns:
- estimation kriging error
Mads.evaluatemadsexpression
— MethodEvaluate an expression string based on a parameter dictionary
Methods:
Mads.evaluatemadsexpression(expressionstring::AbstractString, parameters::AbstractDict)
:/home/travis/build/madsjulia/Mads.jl/src/MadsMisc.jl:154
Arguments:
expressionstring::AbstractString
: expression stringparameters::AbstractDict
: parameter dictionary applied to evaluate the expression string
Returns:
- dictionary containing the expression names as keys, and the values of the expression as values
Mads.evaluatemadsexpressions
— FunctionEvaluate all the expressions in the Mads problem dictiorany based on a parameter dictionary
Methods:
Mads.evaluatemadsexpressions(madsdata::AbstractDict)
:/home/travis/build/madsjulia/Mads.jl/src/MadsMisc.jl:173
Mads.evaluatemadsexpressions(madsdata::AbstractDict, parameters::AbstractDict)
:/home/travis/build/madsjulia/Mads.jl/src/MadsMisc.jl:173
Arguments:
madsdata::AbstractDict
: MADS problem dictionaryparameters::AbstractDict
: parameter dictionary applied to evaluate the expression strings
Returns:
- dictionary containing the parameter and expression names as keys, and the values of the expression as values
Mads.example
— MethodList available examples
Methods:
Mads.examples()
:/home/travis/build/madsjulia/Mads.jl/src/MadsExamples.jl:6
Mads.examples
— MethodList available examples
Methods:
Mads.examples()
:/home/travis/build/madsjulia/Mads.jl/src/MadsExamples.jl:6
Mads.expcov
— MethodExponential spatial covariance function
Methods:
Mads.expcov(h::Number, maxcov::Number, scale::Number)
:/home/travis/build/madsjulia/Mads.jl/src/MadsKriging.jl:31
Arguments:
h::Number
: separation distancemaxcov::Number
: maximum covariancescale::Number
: scale
Returns:
- covariance
Mads.exponentialvariogram
— MethodExponential variogram
Methods:
Mads.exponentialvariogram(h::Number, sill::Number, range::Number, nugget::Number)
:/home/travis/build/madsjulia/Mads.jl/src/MadsKriging.jl:83
Arguments:
h::Number
: separation distancenugget::Number
: nuggetrange::Number
: rangesill::Number
: sill
Returns:
- Exponential variogram
Mads.filterkeys
— FunctionFilter dictionary keys based on a string or regular expression
Methods:
Mads.filterkeys(dict::AbstractDict)
:/home/travis/build/madsjulia/Mads.jl/src/MadsIO.jl:979
Mads.filterkeys(dict::AbstractDict, key::AbstractString)
:/home/travis/build/madsjulia/Mads.jl/src/MadsIO.jl:979
Mads.filterkeys(dict::AbstractDict, key::Regex)
:/home/travis/build/madsjulia/Mads.jl/src/MadsIO.jl:978
Arguments:
dict::AbstractDict
: dictionarykey::AbstractString
: the regular expression or string used to filter dictionary keyskey::Regex
: the regular expression or string used to filter dictionary keys
Mads.forward
— FunctionPerform a forward run using the initial or provided values for the model parameters
Methods:
Mads.forward(madsdata::AbstractDict, paramarray::AbstractArray; all, checkpointfrequency, checkpointfilename)
:/home/travis/build/madsjulia/Mads.jl/src/MadsForward.jl:46
Mads.forward(madsdata::AbstractDict, paramdict::AbstractDict; all, checkpointfrequency, checkpointfilename)
:/home/travis/build/madsjulia/Mads.jl/src/MadsForward.jl:11
Mads.forward(madsdata::AbstractDict; all)
:/home/travis/build/madsjulia/Mads.jl/src/MadsForward.jl:7
Arguments:
madsdata::AbstractDict
: MADS problem dictionaryparamarray::AbstractArray
: array of model parameter valuesparamdict::AbstractDict
: dictionary of model parameter values
Keywords:
all
: all model results are returned [default=false
]checkpointfilename
: check point file name [default="checkpoint_forward"]checkpointfrequency
: check point frequency for storing restart information [default=0
]
Returns:
- dictionary of model predictions
Mads.forwardgrid
— FunctionPerform a forward run over a 3D grid defined in madsdata
using the initial or provided values for the model parameters
Methods:
Mads.forwardgrid(madsdata::AbstractDict)
:/home/travis/build/madsjulia/Mads.jl/src/MadsForward.jl:134
Mads.forwardgrid(madsdatain::AbstractDict, paramvalues::AbstractDict)
:/home/travis/build/madsjulia/Mads.jl/src/MadsForward.jl:139
Arguments:
madsdata::AbstractDict
: MADS problem dictionarymadsdatain::AbstractDict
: MADS problem dictionaryparamvalues::AbstractDict
: dictionary of model parameter values
Returns:
- 3D array with model predictions along a 3D grid
Mads.free
— FunctionFree Mads modules
Methods:
Mads.free()
:/home/travis/build/madsjulia/Mads.jl/src/MadsModules.jl:231
Mads.free(modulename::AbstractString; required, all)
:/home/travis/build/madsjulia/Mads.jl/src/MadsModules.jl:231
Arguments:
modulename::AbstractString
: module name
Keywords:
all
: free all the modules [default=false
]required
: only free Mads.required modules [default=false
]
Mads.functions
— FunctionList available functions in the MADS modules:
Methods:
Mads.functions()
:/home/travis/build/madsjulia/Mads.jl/src/MadsHelp.jl:57
Mads.functions(m::Union{Module, Symbol})
:/home/travis/build/madsjulia/Mads.jl/src/MadsHelp.jl:96
Mads.functions(m::Union{Module, Symbol}, re::Regex; shortoutput, quiet)
:/home/travis/build/madsjulia/Mads.jl/src/MadsHelp.jl:66
Mads.functions(m::Union{Module, Symbol}, string::AbstractString; shortoutput, quiet)
:/home/travis/build/madsjulia/Mads.jl/src/MadsHelp.jl:96
Mads.functions(re::Regex; shortoutput, quiet)
:/home/travis/build/madsjulia/Mads.jl/src/MadsHelp.jl:48
Mads.functions(string::AbstractString; shortoutput, quiet)
:/home/travis/build/madsjulia/Mads.jl/src/MadsHelp.jl:57
Arguments:
m::Union{Module, Symbol}
: MADS modulere::Regex
string::AbstractString
: string to display functions with matching names
Keywords:
quiet
shortoutput
Examples:
Mads.functions()
Mads.functions(BIGUQ)
Mads.functions("get")
Mads.functions(Mads, "get")
Mads.gaussiancov
— MethodGaussian spatial covariance function
Methods:
Mads.gaussiancov(h::Number, maxcov::Number, scale::Number)
:/home/travis/build/madsjulia/Mads.jl/src/MadsKriging.jl:17
Arguments:
h::Number
: separation distancemaxcov::Number
: maximum covariancescale::Number
: scale
Returns:
- covariance
Mads.gaussianvariogram
— MethodGaussian variogram
Methods:
Mads.gaussianvariogram(h::Number, sill::Number, range::Number, nugget::Number)
:/home/travis/build/madsjulia/Mads.jl/src/MadsKriging.jl:104
Arguments:
h::Number
: separation distancenugget::Number
: nuggetrange::Number
: rangesill::Number
: sill
Returns:
- Gaussian variogram
Mads.getcovmat
— MethodGet spatial covariance matrix
Methods:
Mads.getcovmat(X::AbstractMatrix, covfunction::Function)
:/home/travis/build/madsjulia/Mads.jl/src/MadsKriging.jl:160
Arguments:
X::AbstractMatrix
: matrix with coordinates of the data points (x or y)covfunction::Function
Returns:
- spatial covariance matrix
Mads.getcovvec!
— MethodGet spatial covariance vector
Methods:
Mads.getcovvec!(covvec::AbstractVector, x0::AbstractVector, X::AbstractMatrix, covfn::Function)
:/home/travis/build/madsjulia/Mads.jl/src/MadsKriging.jl:186
Arguments:
X::AbstractMatrix
: matrix with coordinates of the data pointscovfn::Function
: spatial covariance functioncovvec::AbstractVector
: spatial covariance vectorx0::AbstractVector
: vector with coordinates of the estimation points (x or y)
Returns:
- spatial covariance vector
Mads.getdictvalues
— FunctionGet dictionary values for keys based on a string or regular expression
Methods:
Mads.getdictvalues(dict::AbstractDict)
:/home/travis/build/madsjulia/Mads.jl/src/MadsIO.jl:1001
Mads.getdictvalues(dict::AbstractDict, key::AbstractString)
:/home/travis/build/madsjulia/Mads.jl/src/MadsIO.jl:1001
Mads.getdictvalues(dict::AbstractDict, key::Regex)
:/home/travis/build/madsjulia/Mads.jl/src/MadsIO.jl:1000
Arguments:
dict::AbstractDict
: dictionarykey::AbstractString
: the key to find value forkey::Regex
: the key to find value for
Mads.getdir
— MethodGet directory
Methods:
Mads.getdir(filename::AbstractString)
:/home/travis/build/madsjulia/Mads.jl/src/MadsIO.jl:570
Arguments:
filename::AbstractString
: file name
Returns:
- directory in file name
Example:
d = Mads.getdir("a.mads") # d = "."
d = Mads.getdir("test/a.mads") # d = "test"
Mads.getdistribution
— MethodParse parameter distribution from a string
Methods:
Mads.getdistribution(dist::AbstractString, i::AbstractString, inputtype::AbstractString)
:/home/travis/build/madsjulia/Mads.jl/src/MadsMisc.jl:207
Arguments:
dist::AbstractString
: parameter distributioni::AbstractString
inputtype::AbstractString
: input type (parameter or observation)
Returns:
- distribution
Mads.getextension
— MethodGet file name extension
Methods:
Mads.getextension(filename::AbstractString)
:/home/travis/build/madsjulia/Mads.jl/src/MadsIO.jl:746
Arguments:
filename::AbstractString
: file name
Returns:
- file name extension
Example:
ext = Mads.getextension("a.mads") # ext = "mads"
Mads.getfilenames
— MethodGet file names by expanding wildcards
Methods:
Mads.getfilenames(cmdstring::AbstractString)
:/home/travis/build/madsjulia/Mads.jl/src/MadsIO.jl:103
Arguments:
cmdstring::AbstractString
Mads.getimportantsamples
— MethodGet important samples
Methods:
Mads.getimportantsamples(samples::Array, llhoods::AbstractVector)
:/home/travis/build/madsjulia/Mads.jl/src/MadsSensitivityAnalysis.jl:357
Arguments:
llhoods::AbstractVector
: vector of log-likelihoodssamples::Array
: array of samples
Returns:
- array of important samples
Mads.getlogparamkeys
— MethodGet the keys in the MADS problem dictionary for parameters that are log-transformed (log
)
Mads.getmadsinputfile
— MethodGet the default MADS input file set as a MADS global variable using setmadsinputfile(filename)
Methods:
Mads.getmadsinputfile()
:/home/travis/build/madsjulia/Mads.jl/src/MadsIO.jl:522
Returns:
- input file name (e.g.
input_file_name.mads
)
Mads.getmadsproblemdir
— MethodGet the directory where the Mads data file is located
Methods:
Mads.getmadsproblemdir(madsdata::AbstractDict)
:/home/travis/build/madsjulia/Mads.jl/src/MadsIO.jl:593
Arguments:
madsdata::AbstractDict
: MADS problem dictionary
Example:
madsdata = Mads.loadmadsfile("../../a.mads")
madsproblemdir = Mads.getmadsproblemdir(madsdata)
where madsproblemdir
= "../../"
Mads.getmadsrootname
— MethodGet the MADS problem root name
Methods:
Mads.getmadsrootname(madsdata::AbstractDict; first, version)
:/home/travis/build/madsjulia/Mads.jl/src/MadsIO.jl:544
Arguments:
madsdata::AbstractDict
: MADS problem dictionary
Keywords:
first
: use the first . in filename as the seperator between root name and extention [default=true
]version
: delete version information from filename for the returned rootname [default=false
]
Example:
madsrootname = Mads.getmadsrootname(madsdata)
Returns:
- root of file name
Mads.getnextmadsfilename
— MethodGet next mads file name
Methods:
Mads.getnextmadsfilename(filename::AbstractString)
:/home/travis/build/madsjulia/Mads.jl/src/MadsIO.jl:709
Arguments:
filename::AbstractString
: file name
Returns:
- next mads file name
Mads.getnonlogparamkeys
— MethodGet the keys in the MADS problem dictionary for parameters that are NOT log-transformed (log
)
Mads.getnonoptparamkeys
— MethodGet the keys in the MADS problem dictionary for parameters that are NOT optimized (opt
)
Mads.getobsdist
— MethodGet an array with dist
values for observations in the MADS problem dictionary defined by obskeys
Mads.getobsdist
— MethodGet an array with dist
values for all observations in the MADS problem dictionary
Mads.getobskeys
— MethodGet keys for all observations in the MADS problem dictionary
Methods:
Mads.getobskeys(madsdata::AbstractDict)
:/home/travis/build/madsjulia/Mads.jl/src/MadsObservations.jl:43
Arguments:
madsdata::AbstractDict
: MADS problem dictionary
Returns:
- keys for all observations in the MADS problem dictionary
Mads.getobslog
— MethodGet an array with log
values for observations in the MADS problem dictionary defined by obskeys
Mads.getobslog
— MethodGet an array with log
values for all observations in the MADS problem dictionary
Mads.getobsmax
— MethodGet an array with max
values for observations in the MADS problem dictionary defined by obskeys
Mads.getobsmax
— MethodGet an array with max
values for all observations in the MADS problem dictionary
Mads.getobsmin
— MethodGet an array with min
values for observations in the MADS problem dictionary defined by obskeys
Mads.getobsmin
— MethodGet an array with min
values for all observations in the MADS problem dictionary
Mads.getobstarget
— MethodGet an array with target
values for observations in the MADS problem dictionary defined by obskeys
Mads.getobstarget
— MethodGet an array with target
values for all observations in the MADS problem dictionary
Mads.getobstime
— MethodGet an array with time
values for observations in the MADS problem dictionary defined by obskeys
Mads.getobstime
— MethodGet an array with time
values for all observations in the MADS problem dictionary
Mads.getobsweight
— MethodGet an array with weight
values for observations in the MADS problem dictionary defined by obskeys
Mads.getobsweight
— MethodGet an array with weight
values for all observations in the MADS problem dictionary
Mads.getoptparamkeys
— MethodGet the keys in the MADS problem dictionary for parameters that are optimized (opt
)
Mads.getoptparams
— FunctionGet optimizable parameters
Methods:
Mads.getoptparams(madsdata::AbstractDict)
:/home/travis/build/madsjulia/Mads.jl/src/MadsParameters.jl:364
Mads.getoptparams(madsdata::AbstractDict, parameterarray::Array)
:/home/travis/build/madsjulia/Mads.jl/src/MadsParameters.jl:364
Mads.getoptparams(madsdata::AbstractDict, parameterarray::Array, optparameterkey::Array)
:/home/travis/build/madsjulia/Mads.jl/src/MadsParameters.jl:364
Arguments:
madsdata::AbstractDict
: MADS problem dictionaryoptparameterkey::Array
: optimizable parameter keysparameterarray::Array
: parameter array
Returns:
- parameter array
Mads.getparamdict
— MethodGet dictionary with all parameters and their respective initial values
Methods:
Mads.getparamdict(madsdata::AbstractDict)
:/home/travis/build/madsjulia/Mads.jl/src/MadsParameters.jl:61
Arguments:
madsdata::AbstractDict
: MADS problem dictionary
Returns:
- dictionary with all parameters and their respective initial values
Mads.getparamdistributions
— MethodGet probabilistic distributions of all parameters in the MADS problem dictionary
Note:
Probabilistic distribution of parameters can be defined only if dist
or min
/max
model parameter fields are specified in the MADS problem dictionary madsdata
.
Methods:
Mads.getparamdistributions(madsdata::AbstractDict; init_dist)
:/home/travis/build/madsjulia/Mads.jl/src/MadsParameters.jl:696
Arguments:
madsdata::AbstractDict
: MADS problem dictionary
Keywords:
init_dist
: iftrue
use the distribution defined for initialization in the MADS problem dictionary (defined usinginit_dist
parameter field); else use the regular distribution defined in the MADS problem dictionary (defined usingdist
parameter field [default=false
]
Returns:
- probabilistic distributions
Mads.getparamkeys
— MethodGet keys of all parameters in the MADS problem dictionary
Methods:
Mads.getparamkeys(madsdata::AbstractDict; filter)
:/home/travis/build/madsjulia/Mads.jl/src/MadsParameters.jl:42
Arguments:
madsdata::AbstractDict
: MADS problem dictionary
Keywords:
filter
: parameter filter
Returns:
- array with the keys of all parameters in the MADS problem dictionary
Mads.getparamrandom
— FunctionGet independent sampling of model parameters defined in the MADS problem dictionary
Methods:
Mads.getparamrandom(madsdata::AbstractDict)
:/home/travis/build/madsjulia/Mads.jl/src/MadsSensitivityAnalysis.jl:393
Mads.getparamrandom(madsdata::AbstractDict, numsamples::Integer)
:/home/travis/build/madsjulia/Mads.jl/src/MadsSensitivityAnalysis.jl:393
Mads.getparamrandom(madsdata::AbstractDict, numsamples::Integer, parameterkey::AbstractString; init_dist)
:/home/travis/build/madsjulia/Mads.jl/src/MadsSensitivityAnalysis.jl:393
Mads.getparamrandom(madsdata::AbstractDict, parameterkey::AbstractString; numsamples, paramdist, init_dist)
:/home/travis/build/madsjulia/Mads.jl/src/MadsSensitivityAnalysis.jl:410
Arguments:
madsdata::AbstractDict
: MADS problem dictionarynumsamples::Integer
: number of samples, [default=1
]parameterkey::AbstractString
: model parameter key
Keywords:
init_dist
: iftrue
use the distribution set for initialization in the MADS problem dictionary (defined usinginit_dist
parameter field); iffalse
(default) use the regular distribution set in the MADS problem dictionary (defined usingdist
parameter field)numsamples
: number of samplesparamdist
: dictionary of parameter distributions
Returns:
- generated sample
Mads.getparamsinit
— MethodGet an array with init values for parameters defined by paramkeys
Mads.getparamsinit
— MethodGet an array with init values for all the MADS model parameters
Mads.getparamsinit_max
— FunctionGet an array with init_max
values for parameters defined by paramkeys
Methods:
Mads.getparamsinit_max(madsdata::AbstractDict)
:/home/travis/build/madsjulia/Mads.jl/src/MadsParameters.jl:275
Mads.getparamsinit_max(madsdata::AbstractDict, paramkeys::AbstractVector)
:/home/travis/build/madsjulia/Mads.jl/src/MadsParameters.jl:275
Arguments:
madsdata::AbstractDict
: MADS problem dictionaryparamkeys::AbstractVector
: parameter keys
Returns:
- the parameter values
Mads.getparamsinit_min
— FunctionGet an array with init_min
values for parameters
Methods:
Mads.getparamsinit_min(madsdata::AbstractDict)
:/home/travis/build/madsjulia/Mads.jl/src/MadsParameters.jl:229
Mads.getparamsinit_min(madsdata::AbstractDict, paramkeys::AbstractVector)
:/home/travis/build/madsjulia/Mads.jl/src/MadsParameters.jl:229
Arguments:
madsdata::AbstractDict
: MADS problem dictionaryparamkeys::AbstractVector
: parameter keys
Returns:
- the parameter values
Mads.getparamslog
— MethodGet an array with log values for parameters defined by paramkeys
Mads.getparamslog
— MethodGet an array with log values for all the MADS model parameters
Mads.getparamslongname
— MethodGet an array with longname values for parameters defined by paramkeys
Mads.getparamslongname
— MethodGet an array with longname values for all the MADS model parameters
Mads.getparamsmax
— FunctionGet an array with max
values for parameters defined by paramkeys
Methods:
Mads.getparamsmax(madsdata::AbstractDict)
:/home/travis/build/madsjulia/Mads.jl/src/MadsParameters.jl:195
Mads.getparamsmax(madsdata::AbstractDict, paramkeys::AbstractVector)
:/home/travis/build/madsjulia/Mads.jl/src/MadsParameters.jl:195
Arguments:
madsdata::AbstractDict
: MADS problem dictionaryparamkeys::AbstractVector
: parameter keys
Returns:
- returns the parameter values
Mads.getparamsmin
— FunctionGet an array with min
values for parameters defined by paramkeys
Methods:
Mads.getparamsmin(madsdata::AbstractDict)
:/home/travis/build/madsjulia/Mads.jl/src/MadsParameters.jl:161
Mads.getparamsmin(madsdata::AbstractDict, paramkeys::AbstractVector)
:/home/travis/build/madsjulia/Mads.jl/src/MadsParameters.jl:161
Arguments:
madsdata::AbstractDict
: MADS problem dictionaryparamkeys::AbstractVector
: parameter keys
Returns:
- the parameter values
Mads.getparamsplotname
— MethodGet an array with plotname values for parameters defined by paramkeys
Mads.getparamsplotname
— MethodGet an array with plotname values for all the MADS model parameters
Mads.getparamsstep
— MethodGet an array with step values for parameters defined by paramkeys
Mads.getparamsstep
— MethodGet an array with step values for all the MADS model parameters
Mads.getparamstype
— MethodGet an array with type values for parameters defined by paramkeys
Mads.getparamstype
— MethodGet an array with type values for all the MADS model parameters
Mads.getproblemdir
— MethodGet the directory where currently Mads is running
Methods:
Mads.getproblemdir()
:/home/travis/build/madsjulia/Mads.jl/src/MadsIO.jl:616
Example:
problemdir = Mads.getproblemdir()
Returns:
- Mads problem directory
Mads.getprocs
— MethodGet the number of processors
Methods:
Mads.getprocs()
:/home/travis/build/madsjulia/Mads.jl/src/MadsParallel.jl:27
Mads.getrestart
— MethodGet MADS restart status
Methods:
Mads.getrestart(madsdata::AbstractDict)
:/home/travis/build/madsjulia/Mads.jl/src/MadsHelpers.jl:94
Arguments:
madsdata::AbstractDict
: MADS problem dictionary
Mads.getrestartdir
— FunctionGet the directory where Mads restarts will be stored
Methods:
Mads.getrestartdir(madsdata::AbstractDict)
:/home/travis/build/madsjulia/Mads.jl/src/MadsFunc.jl:387
Mads.getrestartdir(madsdata::AbstractDict, suffix::AbstractString)
:/home/travis/build/madsjulia/Mads.jl/src/MadsFunc.jl:387
Arguments:
madsdata::AbstractDict
: MADS problem dictionarysuffix::AbstractString
: Suffix to be added to the name of restart directory
Returns:
- restart directory where reusable model results will be stored
Mads.getrootname
— MethodGet file name root
Methods:
Mads.getrootname(filename::AbstractString; first, version)
:/home/travis/build/madsjulia/Mads.jl/src/MadsIO.jl:646
Arguments:
filename::AbstractString
: file name
Keywords:
first
: use the first . in filename as the seperator between root name and extention [default=true
]version
: delete version information from filename for the returned rootname [default=false
]
Returns:
- root of file name
Example:
r = Mads.getrootname("a.rnd.dat") # r = "a"
r = Mads.getrootname("a.rnd.dat", first=false) # r = "a.rnd"
Mads.getseed
— MethodGet and return current random seed.
Methods:
Mads.getseed()
:/home/travis/build/madsjulia/Mads.jl/src/MadsHelpers.jl:496
Mads.getsindx
— MethodGet sin-space dx
Methods:
Mads.getsindx(madsdata::AbstractDict)
:/home/travis/build/madsjulia/Mads.jl/src/MadsHelpers.jl:375
Arguments:
madsdata::AbstractDict
: MADS problem dictionary
Returns:
- sin-space dx value
Mads.getsourcekeys
— MethodGet keys of all source parameters in the MADS problem dictionary
Methods:
Mads.getsourcekeys(madsdata::AbstractDict)
:/home/travis/build/madsjulia/Mads.jl/src/MadsParameters.jl:79
Arguments:
madsdata::AbstractDict
: MADS problem dictionary
Returns:
- array with keys of all source parameters in the MADS problem dictionary
Mads.gettarget
— MethodGet observation target
Methods:
Mads.gettarget(o::AbstractDict)
:/home/travis/build/madsjulia/Mads.jl/src/MadsObservations.jl:221
Arguments:
o::AbstractDict
: observation data
Returns:
- observation target
Mads.gettargetkeys
— MethodGet keys for all targets (observations with weights greater than zero) in the MADS problem dictionary
Methods:
Mads.gettargetkeys(madsdata::AbstractDict)
:/home/travis/build/madsjulia/Mads.jl/src/MadsObservations.jl:57
Arguments:
madsdata::AbstractDict
: MADS problem dictionary
Returns:
- keys for all targets in the MADS problem dictionary
Mads.gettime
— MethodGet observation time
Methods:
Mads.gettime(o::AbstractDict)
:/home/travis/build/madsjulia/Mads.jl/src/MadsObservations.jl:144
Arguments:
o::AbstractDict
: observation data
Returns:
- observation time ("NaN" it time is missing)
Mads.getweight
— MethodGet observation weight
Methods:
Mads.getweight(o::AbstractDict)
:/home/travis/build/madsjulia/Mads.jl/src/MadsObservations.jl:182
Arguments:
o::AbstractDict
: observation data
Returns:
- observation weight ("NaN" when weight is missing)
Mads.getwelldata
— MethodGet spatial and temporal data in the Wells
class
Methods:
Mads.getwelldata(madsdata::AbstractDict; time)
:/home/travis/build/madsjulia/Mads.jl/src/MadsObservations.jl:727
Arguments:
madsdata::AbstractDict
: Mads problem dictionary
Keywords:
time
: get observation times [default=false
]
Returns:
- array with spatial and temporal data in the
Wells
class
Mads.getwellkeys
— MethodGet keys for all wells in the MADS problem dictionary
Methods:
Mads.getwellkeys(madsdata::AbstractDict)
:/home/travis/build/madsjulia/Mads.jl/src/MadsObservations.jl:74
Arguments:
madsdata::AbstractDict
: MADS problem dictionary
Returns:
- keys for all wells in the MADS problem dictionary
Mads.getwelltargets
— MethodMethods:
Mads.getwelltargets(madsdata::AbstractDict)
:/home/travis/build/madsjulia/Mads.jl/src/MadsObservations.jl:761
Arguments:
madsdata::AbstractDict
: Mads problem dictionary
Returns:
- array with targets in the
Wells
class
Mads.graphoff
— MethodMADS graph output off
Methods:
Mads.graphoff()
:/home/travis/build/madsjulia/Mads.jl/src/MadsHelpers.jl:166
Mads.graphon
— MethodMADS graph output on
Methods:
Mads.graphon()
:/home/travis/build/madsjulia/Mads.jl/src/MadsHelpers.jl:157
Mads.haskeyword
— FunctionCheck for a keyword
in a class
within the Mads dictionary madsdata
Methods:
Mads.haskeyword(madsdata::AbstractDict, class::AbstractString, keyword::AbstractString)
:/home/travis/build/madsjulia/Mads.jl/src/MadsHelpers.jl:275
Mads.haskeyword(madsdata::AbstractDict, keyword::AbstractString)
:/home/travis/build/madsjulia/Mads.jl/src/MadsHelpers.jl:272
Arguments:
class::AbstractString
: dictionary class; if not provided searches forkeyword
inProblem
classkeyword::AbstractString
: dictionary keymadsdata::AbstractDict
: MADS problem dictionary
Returns: true
or false
Examples:
- `Mads.haskeyword(madsdata, "disp")` ... searches in `Problem` class by default
- `Mads.haskeyword(madsdata, "Wells", "R-28")` ... searches in `Wells` class for a keyword "R-28"
Mads.help
— MethodProduce MADS help information
Methods:
Mads.help()
:/home/travis/build/madsjulia/Mads.jl/src/MadsHelp.jl:35
Mads.importeverywhere
— MethodImport Julia function everywhere from a file. The first function in the Julia input file is the one that will be targeted by Mads for execution.
Methods:
Mads.importeverywhere(filename::AbstractString)
:/home/travis/build/madsjulia/Mads.jl/src/MadsFunc.jl:439
Arguments:
filename::AbstractString
: file name
Returns:
- Julia function to execute the model
Mads.indexkeys
— FunctionFind indexes for dictionary keys based on a string or regular expression
Methods:
Mads.indexkeys(dict::AbstractDict)
:/home/travis/build/madsjulia/Mads.jl/src/MadsIO.jl:990
Mads.indexkeys(dict::AbstractDict, key::AbstractString)
:/home/travis/build/madsjulia/Mads.jl/src/MadsIO.jl:990
Mads.indexkeys(dict::AbstractDict, key::Regex)
:/home/travis/build/madsjulia/Mads.jl/src/MadsIO.jl:989
Arguments:
dict::AbstractDict
: dictionarykey::AbstractString
: the key to find index forkey::Regex
: the key to find index for
Mads.infogap_jump
— FunctionInformation Gap Decision Analysis using JuMP
Methods:
Mads.infogap_jump()
:/home/travis/build/madsjulia/Mads.jl/src/MadsInfoGap.jl:23
Mads.infogap_jump(madsdata::AbstractDict; horizons, retries, random, maxiter, verbosity, seed)
:/home/travis/build/madsjulia/Mads.jl/src/MadsInfoGap.jl:23
Arguments:
madsdata::AbstractDict
: Mads problem dictionary
Keywords:
horizons
: info-gap horizons of uncertainty [default=[0.05, 0.1, 0.2, 0.5]
]maxiter
: maximum number of iterations [default=3000
]random
: random initial guesses [default=false
]retries
: number of solution retries [default=1
]seed
: random seed [default=0
]verbosity
: verbosity output level [default=0
]
Mads.infogap_jump_polynomial
— FunctionInformation Gap Decision Analysis using JuMP
Methods:
Mads.infogap_jump_polynomial()
:/home/travis/build/madsjulia/Mads.jl/src/MadsInfoGap.jl:128
Mads.infogap_jump_polynomial(madsdata::AbstractDict; horizons, retries, random, maxiter, verbosity, quiet, plot, model, seed)
:/home/travis/build/madsjulia/Mads.jl/src/MadsInfoGap.jl:128
Arguments:
madsdata::AbstractDict
: Mads problem dictionary
Keywords:
horizons
: info-gap horizons of uncertainty [default=[0.05, 0.1, 0.2, 0.5]
]maxiter
: maximum number of iterations [default=3000
]model
: model id [default=1
]plot
: activate plotting [default=false
]quiet
: quiet [default=false
]random
: random initial guesses [default=false
]retries
: number of solution retries [default=1
]seed
: random seed [default=0
]verbosity
: verbosity output level [default=0
]
Returns:
- hmin, hmax
Mads.infogap_moi_lin
— FunctionInformation Gap Decision Analysis using MathOptInterface
Methods:
Mads.infogap_moi_lin()
:/home/travis/build/madsjulia/Mads.jl/src/MadsInfoGap.jl:442
Mads.infogap_moi_lin(madsdata::AbstractDict; horizons, retries, random, maxiter, verbosity, seed, pinit)
:/home/travis/build/madsjulia/Mads.jl/src/MadsInfoGap.jl:442
Arguments:
madsdata::AbstractDict
: Mads problem dictionary
Keywords:
horizons
: info-gap horizons of uncertainty [default=[0.05, 0.1, 0.2, 0.5]
]maxiter
: maximum number of iterations [default=3000
]pinit
: vector with initial parametersrandom
: random initial guesses [default=false
]retries
: number of solution retries [default=1
]seed
: random seed [default=0
]verbosity
: verbosity output level [default=0
]
Mads.infogap_moi_polynomial
— FunctionInformation Gap Decision Analysis using MathOptInterface
Methods:
Mads.infogap_moi_polynomial()
:/home/travis/build/madsjulia/Mads.jl/src/MadsInfoGap.jl:301
Mads.infogap_moi_polynomial(madsdata::AbstractDict; horizons, retries, random, maxiter, verbosity, seed, rng, pinit)
:/home/travis/build/madsjulia/Mads.jl/src/MadsInfoGap.jl:301
Arguments:
madsdata::AbstractDict
: Mads problem dictionary
Keywords:
horizons
: info-gap horizons of uncertainty [default=[0.05, 0.1, 0.2, 0.5]
]maxiter
: maximum number of iterations [default=3000
]pinit
: vector with initial parametersrandom
: random initial guesses [default=false
]retries
: number of solution retries [default=1
]rng
seed
: random seed [default=0
]verbosity
: verbosity output level [default=0
]
Mads.ins_obs
— MethodApply Mads instruction file instructionfilename
to read model output file modeloutputfilename
Methods:
Mads.ins_obs(instructionfilename::AbstractString, modeloutputfilename::AbstractString)
:/home/travis/build/madsjulia/Mads.jl/src/MadsIO.jl:1208
Arguments:
instructionfilename::AbstractString
: instruction file namemodeloutputfilename::AbstractString
: model output file name
Returns:
obsdict
: observation dictionary with the model outputs
Mads.instline2regexs
— MethodConvert an instruction line in the Mads instruction file into regular expressions
Methods:
Mads.instline2regexs(instline::AbstractString)
:/home/travis/build/madsjulia/Mads.jl/src/MadsIO.jl:1108
Arguments:
instline::AbstractString
: instruction line
Returns:
regexs
: regular expressionsobsnames
: observation namesgetparamhere
: parameters
Mads.invobsweights!
— FunctionSet inversely proportional observation weights in the MADS problem dictionary
Methods:
Mads.invobsweights!(madsdata::AbstractDict)
:/home/travis/build/madsjulia/Mads.jl/src/MadsObservations.jl:327
Mads.invobsweights!(madsdata::AbstractDict, multiplier::Number)
:/home/travis/build/madsjulia/Mads.jl/src/MadsObservations.jl:327
Mads.invobsweights!(madsdata::AbstractDict, multiplier::Number, obskeys::AbstractVector)
:/home/travis/build/madsjulia/Mads.jl/src/MadsObservations.jl:327
Arguments:
madsdata::AbstractDict
: MADS problem dictionarymultiplier::Number
: weight multiplierobskeys::AbstractVector
Mads.invwellweights!
— FunctionSet inversely proportional well weights in the MADS problem dictionary
Methods:
Mads.invwellweights!(madsdata::AbstractDict, multiplier::Number)
:/home/travis/build/madsjulia/Mads.jl/src/MadsObservations.jl:379
Mads.invwellweights!(madsdata::AbstractDict, multiplier::Number, wellkeys::AbstractVector)
:/home/travis/build/madsjulia/Mads.jl/src/MadsObservations.jl:379
Arguments:
madsdata::AbstractDict
: MADS problem dictionarymultiplier::Number
: weight multiplierwellkeys::AbstractVector
Mads.islog
— MethodIs parameter with key parameterkey
log-transformed?
Methods:
Mads.islog(madsdata::AbstractDict, parameterkey::AbstractString)
:/home/travis/build/madsjulia/Mads.jl/src/MadsParameters.jl:437
Arguments:
madsdata::AbstractDict
: MADS problem dictionaryparameterkey::AbstractString
: parameter key
Returns:
true
if log-transformed,false
otherwise
Mads.isobs
— MethodIs a dictionary containing all the observations
Methods:
Mads.isobs(madsdata::AbstractDict, dict::AbstractDict)
:/home/travis/build/madsjulia/Mads.jl/src/MadsObservations.jl:17
Arguments:
dict::AbstractDict
: dictionarymadsdata::AbstractDict
: MADS problem dictionary
Returns:
true
if the dictionary contain all the observations,false
otherwise
Mads.isopt
— MethodIs parameter with key parameterkey
optimizable?
Methods:
Mads.isopt(madsdata::AbstractDict, parameterkey::AbstractString)
:/home/travis/build/madsjulia/Mads.jl/src/MadsParameters.jl:417
Arguments:
madsdata::AbstractDict
: MADS problem dictionaryparameterkey::AbstractString
: parameter key
Returns:
true
if optimizable,false
if not
Mads.isparam
— MethodCheck if a dictionary containing all the Mads model parameters
Methods:
Mads.isparam(madsdata::AbstractDict, dict::AbstractDict)
:/home/travis/build/madsjulia/Mads.jl/src/MadsParameters.jl:15
Arguments:
dict::AbstractDict
: dictionarymadsdata::AbstractDict
: MADS problem dictionary
Returns:
true
if the dictionary containing all the parameters,false
otherwise
Mads.ispkgavailable
— MethodChecks if package is available
Methods:
Mads.ispkgavailable(modulename::AbstractString)
:/home/travis/build/madsjulia/Mads.jl/src/MadsHelpers.jl:591
Arguments:
modulename::AbstractString
: module name
Returns:
true
orfalse
Mads.ispkgavailable_old
— MethodChecks if package is available
Methods:
Mads.ispkgavailable_old(modulename::AbstractString; quiet)
:/home/travis/build/madsjulia/Mads.jl/src/MadsHelpers.jl:569
Arguments:
modulename::AbstractString
: module name
Keywords:
quiet
Returns:
true
orfalse
Mads.krige
— MethodKriging
Methods:
Mads.krige(x0mat::AbstractMatrix, X::AbstractMatrix, Z::AbstractVector, covfn::Function)
:/home/travis/build/madsjulia/Mads.jl/src/MadsKriging.jl:125
Arguments:
X::AbstractMatrix
: coordinates of the observation (conditioning) dataZ::AbstractVector
: values for the observation (conditioning) datacovfn::Function
: spatial covariance functionx0mat::AbstractMatrix
: point coordinates at which to obtain kriging estimates
Returns:
- kriging estimates at
x0mat
Mads.levenberg_marquardt
— FunctionLevenberg-Marquardt optimization
Methods:
Mads.levenberg_marquardt(f::Function, g::Function, x0)
:/home/travis/build/madsjulia/Mads.jl/src/MadsLevenbergMarquardt.jl:357
Mads.levenberg_marquardt(f::Function, g::Function, x0, o::Function; root, tolX, tolG, tolOF, tolOFcount, minOF, maxEval, maxIter, maxJacobians, lambda, lambda_scale, lambda_mu, lambda_nu, np_lambda, show_trace, quiet, callbackinitial, callbackiteration, callbackjacobian, callbackfinal, parallel_execution, center_provided)
:/home/travis/build/madsjulia/Mads.jl/src/MadsLevenbergMarquardt.jl:357
Arguments:
f::Function
: forward model functiong::Function
: gradient function for the forward modelo::Function
: objective function [default=x->(x'*x)[1]
]x0
: initial parameter guess
Keywords:
callbackfinal
: final call back function [default=(best_x::AbstractVector, of::Number, lambda::Number)->nothing
]callbackinitial
callbackiteration
: call back function for each iteration [default=(best_x::AbstractVector, of::Number, lambda::Number)->nothing
]callbackjacobian
: call back function for each Jacobian [default=(x::AbstractVector, J::AbstractMatrix)->nothing
]center_provided
lambda
: initial Levenberg-Marquardt lambda [default=eps(Float32)
]lambda_mu
: lambda multiplication factor μ [default=10
]lambda_nu
: lambda multiplication factor ν [default=2
]lambda_scale
: lambda scaling factor [default=1e-3,
]maxEval
: maximum number of model evaluations [default=1001
]maxIter
: maximum number of optimization iterations [default=100
]maxJacobians
: maximum number of Jacobian solves [default=100
]minOF
: objective function update tolerance [default=1e-3
]np_lambda
: number of parallel lambda solves [default=10
]parallel_execution
quiet
root
: Mads problem root nameshow_trace
: shows solution trace [default=false
]tolG
: parameter space update tolerance [default=1e-6
]tolOF
: objective function update tolerance [default=1e-3
]tolOFcount
: number of Jacobian runs with small objective function change [default=5
]tolX
: parameter space tolerance [default=1e-4
]
Mads.linktempdir
— MethodLink files in a temporary directory
Methods:
Mads.linktempdir(madsproblemdir::AbstractString, tempdirname::AbstractString)
:/home/travis/build/madsjulia/Mads.jl/src/MadsIO.jl:1475
Arguments:
madsproblemdir::AbstractString
: Mads problem directorytempdirname::AbstractString
: temporary directory name
Mads.loadasciifile
— MethodLoad ASCII file
Methods:
Mads.loadasciifile(filename::AbstractString)
:/home/travis/build/madsjulia/Mads.jl/src/MadsASCII.jl:14
Arguments:
filename::AbstractString
: ASCII file name
Returns:
- data from the file
Mads.loadbigyamlfile
— MethodLoad BIG YAML input file
Methods:
Mads.loadmadsfile(filename::AbstractString; bigfile, format, quiet)
:/home/travis/build/madsjulia/Mads.jl/src/MadsIO.jl:141
Arguments:
filename::AbstractString
: input file name (e.g.input_file_name.mads
)
Keywords:
bigfile
format
quiet
Returns:
- MADS problem dictionary
Mads.loadjsonfile
— MethodLoad a JSON file
Methods:
Mads.loadjsonfile(filename::AbstractString)
:/home/travis/build/madsjulia/Mads.jl/src/MadsJSON.jl:16
Arguments:
filename::AbstractString
: JSON file name
Returns:
- data from the JSON file
Mads.loadmadsfile
— MethodLoad MADS input file defining a MADS problem dictionary
Methods:
Mads.loadmadsfile(filename::AbstractString; bigfile, format, quiet)
:/home/travis/build/madsjulia/Mads.jl/src/MadsIO.jl:141
Arguments:
filename::AbstractString
: input file name (e.g.input_file_name.mads
)
Keywords:
bigfile
format
: acceptable formats areyaml
andjson
[default=yaml
]quiet
Returns:
- MADS problem dictionary
Example:
md = Mads.loadmadsfile("input_file_name.mads")
Mads.loadmadsproblem
— MethodLoad a predefined Mads problem
Methods:
Mads.loadmadsproblem(name::AbstractString)
:/home/travis/build/madsjulia/Mads.jl/src/MadsCreate.jl:14
Arguments:
name::AbstractString
: predefined MADS problem name
Returns:
- MADS problem dictionary
Mads.loadsaltellirestart!
— MethodLoad Saltelli sensitivity analysis results for fast simulation restarts
Methods:
Mads.loadsaltellirestart!(evalmat::Array, matname::AbstractString, restartdir::AbstractString)
:/home/travis/build/madsjulia/Mads.jl/src/MadsSensitivityAnalysis.jl:604
Arguments:
evalmat::Array
: loaded arraymatname::AbstractString
: matrix (array) name (defines the name of the loaded file)restartdir::AbstractString
: directory where files will be stored containing model results for fast simulation restarts
Returns:
true
when successfully loaded,false
when it is not
Mads.loadyamlfile
— MethodLoad YAML file
Methods:
Mads.loadyamlfile(filename::AbstractString)
:/home/travis/build/madsjulia/Mads.jl/src/MadsYAML.jl:16
Arguments:
filename::AbstractString
: file name
Returns:
- data in the yaml input file
Mads.localsa
— MethodLocal sensitivity analysis based on eigen analysis of the parameter covariance matrix
Methods:
Mads.localsa(madsdata::AbstractDict; sinspace, keyword, filename, format, datafiles, imagefiles, par, obs, J)
:/home/travis/build/madsjulia/Mads.jl/src/MadsSensitivityAnalysis.jl:124
Arguments:
madsdata::AbstractDict
: MADS problem dictionary
Keywords:
J
: Jacobian matrixdatafiles
: flag to write data files [default=true
]filename
: output file nameformat
: output plot format (png
,pdf
, etc.)imagefiles
: flag to create image files [default=Mads.graphoutput
]keyword
: keyword to be added in the filename rootobs
: observations for the parameter setpar
: parameter setsinspace
: apply sin transformation [default=true
]
Dumps:
filename
: output plot file
Mads.long_tests_off
— MethodTurn off execution of long MADS tests (default)
Methods:
Mads.long_tests_off()
:/home/travis/build/madsjulia/Mads.jl/src/MadsHelpers.jl:211
Mads.long_tests_on
— MethodTurn on execution of long MADS tests
Methods:
Mads.long_tests_on()
:/home/travis/build/madsjulia/Mads.jl/src/MadsHelpers.jl:202
Mads.madsMathOptInterface
— FunctionDefine MadsModel
type applied for Mads execution using MathOptInterface
Methods:
Mads.madsMathOptInterface()
:/home/travis/build/madsjulia/Mads.jl/src/MadsMathOptInterface.jl:16
Mads.madsMathOptInterface(madsdata::AbstractDict)
:/home/travis/build/madsjulia/Mads.jl/src/MadsMathOptInterface.jl:16
Arguments:
madsdata::AbstractDict
: MADS problem dictionary [default=Dict()
]
Mads.madscores
— FunctionCheck the number of processors on a series of servers
Methods:
Mads.madscores()
:/home/travis/build/madsjulia/Mads.jl/src/MadsParallel.jl:306
Mads.madscores(nodenames::Vector{String})
:/home/travis/build/madsjulia/Mads.jl/src/MadsParallel.jl:306
Arguments:
nodenames::Vector{String}
: array with names of machines/nodes [default=madsservers
]
Mads.madscritical
— MethodMADS critical error messages
Methods:
Mads.madscritical(message::AbstractString)
:/home/travis/build/madsjulia/Mads.jl/src/MadsLog.jl:70
Arguments:
message::AbstractString
: critical error message
Mads.madsdebug
— FunctionMADS debug messages (controlled by quiet
and debuglevel
)
Methods:
Mads.madsdebug(message::AbstractString)
:/home/travis/build/madsjulia/Mads.jl/src/MadsLog.jl:23
Mads.madsdebug(message::AbstractString, level::Int64)
:/home/travis/build/madsjulia/Mads.jl/src/MadsLog.jl:23
Arguments:
level::Int64
: output verbosity level [default=0
]message::AbstractString
: debug message
Mads.madsdir
— MethodChange the current directory to the Mads source dictionary
Methods:
Mads.madsdir()
:/home/travis/build/madsjulia/Mads.jl/src/MadsIO.jl:112
Mads.madserror
— MethodMADS error messages
Methods:
Mads.madserror(message::AbstractString)
:/home/travis/build/madsjulia/Mads.jl/src/MadsLog.jl:60
Arguments:
message::AbstractString
: error message
Mads.madsinfo
— FunctionMADS information/status messages (controlled by quietand
verbositylevel`)
Methods:
Mads.madsinfo(message::AbstractString)
:/home/travis/build/madsjulia/Mads.jl/src/MadsLog.jl:38
Mads.madsinfo(message::AbstractString, level::Int64)
:/home/travis/build/madsjulia/Mads.jl/src/MadsLog.jl:38
Arguments:
level::Int64
: output verbosity level [default=0
]message::AbstractString
: information/status message
Mads.madsload
— FunctionCheck the load of a series of servers
Methods:
Mads.madsload()
:/home/travis/build/madsjulia/Mads.jl/src/MadsParallel.jl:326
Mads.madsload(nodenames::Vector{String})
:/home/travis/build/madsjulia/Mads.jl/src/MadsParallel.jl:326
Arguments:
nodenames::Vector{String}
: array with names of machines/nodes [default=madsservers
]
Mads.madsoutput
— FunctionMADS output (controlled by quiet
and verbositylevel
)
Methods:
Mads.madsoutput(message::AbstractString)
:/home/travis/build/madsjulia/Mads.jl/src/MadsLog.jl:8
Mads.madsoutput(message::AbstractString, level::Int64)
:/home/travis/build/madsjulia/Mads.jl/src/MadsLog.jl:8
Arguments:
level::Int64
: output verbosity level [default=0
]message::AbstractString
: output message
Mads.madsup
— FunctionCheck the uptime of a series of servers
Methods:
Mads.madsup()
:/home/travis/build/madsjulia/Mads.jl/src/MadsParallel.jl:316
Mads.madsup(nodenames::Vector{String})
:/home/travis/build/madsjulia/Mads.jl/src/MadsParallel.jl:316
Arguments:
nodenames::Vector{String}
: array with names of machines/nodes [default=madsservers
]
Mads.madswarn
— MethodMADS warning messages
Methods:
Mads.madswarn(message::AbstractString)
:/home/travis/build/madsjulia/Mads.jl/src/MadsLog.jl:50
Arguments:
message::AbstractString
: warning message
Mads.makearrayconditionalloglikelihood
— MethodMake a conditional log likelihood function that accepts an array containing the optimal parameter values
Methods:
Mads.makearrayconditionalloglikelihood(madsdata::AbstractDict, conditionalloglikelihood)
:/home/travis/build/madsjulia/Mads.jl/src/MadsMisc.jl:104
Arguments:
conditionalloglikelihood
: conditional log likelihoodmadsdata::AbstractDict
: MADS problem dictionary
Returns:
- a conditional log likelihood function that accepts an array
Mads.makearrayconditionalloglikelihood
— MethodMake array of conditional log-likelihoods
Methods:
Mads.makearrayconditionalloglikelihood(madsdata::AbstractDict)
:/home/travis/build/madsjulia/Mads.jl/src/MadsBayesInfoGap.jl:158
Mads.makearrayconditionalloglikelihood(madsdata::AbstractDict, conditionalloglikelihood)
:/home/travis/build/madsjulia/Mads.jl/src/MadsMisc.jl:104
Arguments:
conditionalloglikelihood
madsdata::AbstractDict
: MADS problem dictionary
Returns:
- array of conditional log-likelihoods
Mads.makearrayfunction
— FunctionMake a version of the function f
that accepts an array containing the optimal parameter values
Methods:
Mads.makearrayfunction(madsdata::AbstractDict)
:/home/travis/build/madsjulia/Mads.jl/src/MadsMisc.jl:31
Mads.makearrayfunction(madsdata::AbstractDict, f::Function)
:/home/travis/build/madsjulia/Mads.jl/src/MadsMisc.jl:31
Arguments:
f::Function
: function [default=makemadscommandfunction(madsdata)
]madsdata::AbstractDict
: MADS problem dictionary
Returns:
- function accepting an array containing the optimal parameter values
Mads.makearrayloglikelihood
— MethodMake a log likelihood function that accepts an array containing the optimal parameter values
Methods:
Mads.makearrayloglikelihood(madsdata::AbstractDict, loglikelihood)
:/home/travis/build/madsjulia/Mads.jl/src/MadsMisc.jl:127
Arguments:
loglikelihood
: log likelihoodmadsdata::AbstractDict
: MADS problem dictionary
Returns:
- a log likelihood function that accepts an array
Mads.makebigdt!
— MethodSetup Bayesian Information Gap Decision Theory (BIG-DT) problem
Methods:
Mads.makebigdt!(madsdata::AbstractDict, choice::AbstractDict)
:/home/travis/build/madsjulia/Mads.jl/src/MadsBayesInfoGap.jl:33
Arguments:
choice::AbstractDict
: dictionary of BIG-DT choices (scenarios)madsdata::AbstractDict
: MADS problem dictionary
Returns:
- BIG-DT problem type
Mads.makebigdt
— MethodSetup Bayesian Information Gap Decision Theory (BIG-DT) problem
Methods:
Mads.makebigdt(madsdata::AbstractDict, choice::AbstractDict)
:/home/travis/build/madsjulia/Mads.jl/src/MadsBayesInfoGap.jl:18
Arguments:
choice::AbstractDict
: dictionary of BIG-DT choices (scenarios)madsdata::AbstractDict
: MADS problem dictionary
Returns:
- BIG-DT problem type
Mads.makecomputeconcentrations
— MethodCreate a function to compute concentrations for all the observation points using Anasol
Methods:
Mads.makecomputeconcentrations(madsdata::AbstractDict; calczeroweightobs, calcpredictions)
:/home/travis/build/madsjulia/Mads.jl/src/MadsAnasol.jl:177
Arguments:
madsdata::AbstractDict
: MADS problem dictionary
Keywords:
calcpredictions
: calculate zero weight predictions [default=true
]calczeroweightobs
: calculate zero weight observations[default=false
]
Returns:
- function to compute concentrations; the new function returns a dictionary of observations and model predicted concentrations
Examples:
computeconcentrations = Mads.makecomputeconcentrations(madsdata)
paramkeys = Mads.getparamkeys(madsdata)
paramdict = OrderedDict(zip(paramkeys, map(key->madsdata["Parameters"][key]["init"], paramkeys)))
forward_preds = computeconcentrations(paramdict)
Mads.makedixonprice
— MethodMake dixon price
Methods:
Mads.makedixonprice(n::Integer)
:/home/travis/build/madsjulia/Mads.jl/src/MadsTestFunctions.jl:257
Arguments:
n::Integer
: number of observations
Returns:
- dixon price
Mads.makedixonprice_gradient
— MethodMethods:
Mads.makedixonprice(n::Integer)
:/home/travis/build/madsjulia/Mads.jl/src/MadsTestFunctions.jl:257
Arguments:
n::Integer
: number of observations
Returns:
- dixon price gradient
Mads.makedoublearrayfunction
— FunctionMake a version of the function f
that accepts an array containing the optimal parameter values, and returns an array of observations
Methods:
Mads.makedoublearrayfunction(madsdata::AbstractDict)
:/home/travis/build/madsjulia/Mads.jl/src/MadsMisc.jl:77
Mads.makedoublearrayfunction(madsdata::AbstractDict, f::Function)
:/home/travis/build/madsjulia/Mads.jl/src/MadsMisc.jl:77
Arguments:
f::Function
: function [default=makemadscommandfunction(madsdata)
]madsdata::AbstractDict
: MADS problem dictionary
Returns:
- function accepting an array containing the optimal parameter values, and returning an array of observations
Mads.makelmfunctions
— FunctionMake forward model, gradient, objective functions needed for Levenberg-Marquardt optimization
Methods:
Mads.makelmfunctions(f::Function)
:/home/travis/build/madsjulia/Mads.jl/src/MadsLevenbergMarquardt.jl:107
Mads.makelmfunctions(madsdata::AbstractDict; parallel_gradients)
:/home/travis/build/madsjulia/Mads.jl/src/MadsLevenbergMarquardt.jl:128
Arguments:
f::Function
: Functionmadsdata::AbstractDict
: MADS problem dictionary
Keywords:
parallel_gradients
Returns:
- forward model, gradient, objective functions
Mads.makelocalsafunction
— MethodMake gradient function needed for local sensitivity analysis
Methods:
Mads.makelocalsafunction(madsdata::AbstractDict; multiplycenterbyweights)
:/home/travis/build/madsjulia/Mads.jl/src/MadsSensitivityAnalysis.jl:25
Arguments:
madsdata::AbstractDict
: MADS problem dictionary
Keywords:
multiplycenterbyweights
: multiply center by observation weights [default=true
]
Returns:
- gradient function
Mads.makelogprior
— MethodMake a function to compute the prior log-likelihood of the model parameters listed in the MADS problem dictionary madsdata
Methods:
Mads.makelogprior(madsdata::AbstractDict)
:/home/travis/build/madsjulia/Mads.jl/src/MadsFunc.jl:467
Arguments:
madsdata::AbstractDict
: MADS problem dictionary
Return:
- the prior log-likelihood of the model parameters listed in the MADS problem dictionary
madsdata
Mads.makemadscommandfunction
— MethodMake MADS function to execute the model defined in the input MADS problem dictionary
Methods:
Mads.makemadscommandfunction(madsdata_in::AbstractDict; obskeys, calczeroweightobs, calcpredictions, quiet)
:/home/travis/build/madsjulia/Mads.jl/src/MadsFunc.jl:68
Arguments:
madsdata_in::AbstractDict
Keywords:
calcpredictions
: Calculate predictions [default=true
]calczeroweightobs
: Calculate zero weight observations [default=false
]obskeys
quiet
Example:
Mads.makemadscommandfunction(madsdata)
MADS can be coupled with any internal or external model. The model coupling is defined in the MADS problem dictionary. The expectations is that for a given set of model inputs, the model will produce a model output that will be provided to MADS. The fields in the MADS problem dictionary that can be used to define the model coupling are:
Model
: execute a Julia function defined in an external input Julia file. The function that should accept aparameter
dictionary with all the model parameters as an input argument and should return anobservation
dictionary with all the model predicted observations. MADS will execute the first function defined in the file.MADS model
: create a Julia function based on an external input Julia file. The input file should contain a function that accepts as an argument the MADS problem dictionary. MADS will execute the first function defined in the file. This function should create a Julia function that will accept aparameter
dictionary with all the model parameters as an input argument and will return anobservation
dictionary with all the model predicted observations.Julia model
: execute an internal Julia function that accepts aparameter
dictionary with all the model parameters as an input argument and will return anobservation
dictionary with all the model predicted observations.Julia function
: execute an internal Julia function that accepts aparameter
vector with all the model parameters as an input argument and will return anobservation
vector with all the model predicted observations.Command
: execute an external UNIX command or script that will execute an external model.Julia command
: execute a Julia script that will execute an external model. The Julia script is defined in an external Julia file. The input file should contain a function that accepts aparameter
dictionary with all the model parameters as an input argument; MADS will execute the first function defined in the file. The Julia script should be capable to (1) execute the model (making a system call of an external model), (2) parse the model outputs, (3) return anobservation
dictionary with model predictions.
Both Command
and Julia command
can use different approaches to pass model parameters to the external model.
Only Command
uses different approaches to get back the model outputs.
The script defined under Julia command
parses the model outputs using Julia.
The available options for writing model inputs and reading model outputs are as follows.
Options for writing model inputs:
Templates
: template files for writing model input files as defined at http://madsjulia.github.ioASCIIParameters
: model parameters written in a ASCII fileJLDParameters
: model parameters written in a JLD fileYAMLParameters
: model parameters written in a YAML fileJSONParameters
: model parameters written in a JSON file
Options for reading model outputs:
Instructions
: instruction files for reading model output files as defined at http://madsjulia.github.ioASCIIPredictions
: model predictions read from a ASCII fileJLDPredictions
: model predictions read from a JLD fileYAMLPredictions
: model predictions read from a YAML fileJSONPredictions
: model predictions read from a JSON file
Returns:
- Mads function to execute a forward model simulation
Mads.makemadsconditionalloglikelihood
— MethodMake a function to compute the conditional log-likelihood of the model parameters conditioned on the model predictions/observations. Model parameters and observations are defined in the MADS problem dictionary madsdata
.
Methods:
Mads.makemadsconditionalloglikelihood(madsdata::AbstractDict; weightfactor)
:/home/travis/build/madsjulia/Mads.jl/src/MadsFunc.jl:490
Arguments:
madsdata::AbstractDict
: MADS problem dictionary
Keywords:
weightfactor
: Weight factor [default=1
]
Return:
- the conditional log-likelihood
Mads.makemadsloglikelihood
— MethodMake a function to compute the log-likelihood for a given set of model parameters, associated model predictions and existing observations. By default, the Log-likelihood function computed internally. The Log-likelihood can be constructed from an external Julia function defined the MADS problem dictionary under LogLikelihood
or ConditionalLogLikelihood
.
In the case of a LogLikelihood
external Julia function, the first function in the file provided should be a function that takes as arguments:
- dictionary of model parameters
- dictionary of model predictions
- dictionary of respective observations
In the case of a ConditionalLogLikelihood
external Julia function, the first function in the file provided should be a function that takes as arguments:
- dictionary of model predictions
- dictionary of respective observations
Methods:
Mads.makemadsloglikelihood(madsdata::AbstractDict; weightfactor)
:/home/travis/build/madsjulia/Mads.jl/src/MadsFunc.jl:535
Arguments:
madsdata::AbstractDict
: MADS problem dictionary
Keywords:
weightfactor
: Weight factor [default=1
]
Returns:
- the log-likelihood for a given set of model parameters
Mads.makemadsreusablefunction
— FunctionMake Reusable Mads function to execute a forward model simulation (automatically restarts if restart data exists)
Methods:
Mads.makemadsreusablefunction(madsdata::AbstractDict, madscommandfunction::Function)
:/home/travis/build/madsjulia/Mads.jl/src/MadsFunc.jl:339
Mads.makemadsreusablefunction(madsdata::AbstractDict, madscommandfunction::Function, suffix::AbstractString; usedict)
:/home/travis/build/madsjulia/Mads.jl/src/MadsFunc.jl:339
Mads.makemadsreusablefunction(paramkeys::AbstractVector, obskeys::AbstractVector, madsdatarestart::Union{Bool, String}, madscommandfunction::Function, restartdir::AbstractString; usedict)
:/home/travis/build/madsjulia/Mads.jl/src/MadsFunc.jl:342
Arguments:
madscommandfunction::Function
: Mads function to execute a forward model simulationmadsdata::AbstractDict
: MADS problem dictionarymadsdatarestart::Union{Bool, String}
: Restart type (memory/disk) or on/off statusobskeys::AbstractVector
: Dictionary of observation keysparamkeys::AbstractVector
: Dictionary of parameter keysrestartdir::AbstractString
: Restart directory where the reusable model results are storedsuffix::AbstractString
: Suffix to be added to the name of restart directory
Keywords:
usedict
: Use dictionary [default=true
]
Returns:
- Reusable Mads function to execute a forward model simulation (automatically restarts if restart data exists)
Mads.makemoifunctions
— MethodMake forward model, gradient, objective functions needed for MathOptInterface optimization
Methods:
Mads.makemoifunctions(madsdata::AbstractDict)
:/home/travis/build/madsjulia/Mads.jl/src/MadsMathOptInterface.jl:90
Arguments:
madsdata::AbstractDict
: MADS problem dictionary
Returns:
- forward model, gradient, objective functions
Mads.makepowell
— MethodMake Powell test function for LM optimization
Methods:
Mads.makepowell(n::Integer)
:/home/travis/build/madsjulia/Mads.jl/src/MadsTestFunctions.jl:160
Arguments:
n::Integer
: number of observations
Returns:
- Powell test function for LM optimization
Mads.makepowell_gradient
— Methodake parameter gradients of the Powell test function for LM optimization
Methods:
Mads.makepowell_gradient(n::Integer)
:/home/travis/build/madsjulia/Mads.jl/src/MadsTestFunctions.jl:184
Arguments:
n::Integer
: number of observations
Returns:
- arameter gradients of the Powell test function for LM optimization
Mads.makerosenbrock
— MethodMake Rosenbrock test function for LM optimization
Methods:
Mads.makerosenbrock(n::Integer)
:/home/travis/build/madsjulia/Mads.jl/src/MadsTestFunctions.jl:115
Arguments:
n::Integer
: number of observations
Returns:
- Rosenbrock test function for LM optimization
Mads.makerosenbrock_gradient
— MethodMake parameter gradients of the Rosenbrock test function for LM optimization
Methods:
Mads.makerosenbrock_gradient(n::Integer)
:/home/travis/build/madsjulia/Mads.jl/src/MadsTestFunctions.jl:137
Arguments:
n::Integer
: number of observations
Returns:
- parameter gradients of the Rosenbrock test function for LM optimization
Mads.makerotatedhyperellipsoid
— MethodMethods:
Mads.makerotatedhyperellipsoid(n::Integer)
:/home/travis/build/madsjulia/Mads.jl/src/MadsTestFunctions.jl:336
Arguments:
n::Integer
: number of observations
Returns:
- rotated hyperellipsoid
Mads.makerotatedhyperellipsoid_gradient
— MethodMethods:
Mads.makerotatedhyperellipsoid_gradient(n::Integer)
:/home/travis/build/madsjulia/Mads.jl/src/MadsTestFunctions.jl:360
Arguments:
n::Integer
: number of observations
Returns:
- rotated hyperellipsoid gradient
Mads.makesphere
— MethodMake sphere
Methods:
Mads.makesphere(n::Integer)
:/home/travis/build/madsjulia/Mads.jl/src/MadsTestFunctions.jl:215
Arguments:
n::Integer
: number of observations
Returns:
- sphere
Mads.makesphere_gradient
— MethodMake sphere gradient
Methods:
Mads.makesphere_gradient(n::Integer)
:/home/travis/build/madsjulia/Mads.jl/src/MadsTestFunctions.jl:236
Arguments:
n::Integer
: number of observations
Returns:
- sphere gradient
Mads.makesumsquares
— MethodMethods:
Mads.makesumsquares(n::Integer)
:/home/travis/build/madsjulia/Mads.jl/src/MadsTestFunctions.jl:298
Arguments:
n::Integer
: number of observations
Returns:
- sumsquares
Mads.makesumsquares_gradient
— MethodMethods:
Mads.makesumsquares_gradient(n::Integer)
:/home/travis/build/madsjulia/Mads.jl/src/MadsTestFunctions.jl:317
Arguments:
n::Integer
: number of observations
Returns:
- sumsquares gradient
Mads.makesvrmodel
— FunctionMake SVR model functions (executor and cleaner)
Methods:
Mads.makesvrmodel(madsdata::AbstractDict)
:/home/travis/build/madsjulia/Mads.jl/src/MadsSVR.jl:204
Mads.makesvrmodel(madsdata::AbstractDict, numberofsamples::Integer; check, addminmax, loadsvr, savesvr, svm_type, kernel_type, degree, gamma, coef0, C, nu, epsilon, cache_size, tol, shrinking, probability, verbose, seed)
:/home/travis/build/madsjulia/Mads.jl/src/MadsSVR.jl:204
Arguments:
madsdata::AbstractDict
: MADS problem dictionarynumberofsamples::Integer
: number of samples [default=100
]
Keywords:
C
: cost; penalty parameter of the error term [default=1000.0
]addminmax
: add parameter minimum / maximum range values in the training set [default=true
]cache_size
: size of the kernel cache [default=100.0
]check
: check SVR performance [default=false
]coef0
: independent term in kernel function; important only in POLY and SIGMOND kernel types [default=0
]degree
: degree of the polynomial kernel [default=3
]epsilon
: epsilon in the EPSILON_SVR model; defines an epsilon-tube within which no penalty is associated in the training loss function with points predicted within a distance epsilon from the actual value [default=0.001
]gamma
: coefficient for RBF, POLY and SIGMOND kernel types [default=1/numberofsamples
]kernel_type
: kernel type[default=SVR.RBF
]loadsvr
: load SVR models [default=false
]nu
: upper bound on the fraction of training errors / lower bound of the fraction of support vectors; acceptable range (0, 1]; applied if NU_SVR model [default=0.5
]probability
: train to estimate probabilities [default=false
]savesvr
: save SVR models [default=false
]seed
: random seed [default=0
]shrinking
: apply shrinking heuristic [default=true
]svm_type
: SVM type [default=SVR.EPSILON_SVR
]tol
: tolerance of termination criterion [default=0.001
]verbose
: verbose output [default=false
]
Returns:
- function performing SVR predictions
- function loading existing SVR models
- function saving SVR models
- function removing SVR models from the memory
Mads.maxtofloatmax!
— MethodScale down values larger than max(Float32) in a dataframe df
so that Gadfly can plot the data
Methods:
Mads.maxtofloatmax!(df::DataFrames.DataFrame)
:/home/travis/build/madsjulia/Mads.jl/src/MadsSensitivityAnalysis.jl:1110
Arguments:
df::DataFrames.DataFrame
: dataframe
Mads.meshgrid
— FunctionCreate mesh grid
Methods:
Mads.meshgrid(nx::Number, ny::Number)
:/home/travis/build/madsjulia/Mads.jl/src/MadsHelpers.jl:454
Mads.meshgrid(x::AbstractVector, y::AbstractVector)
:/home/travis/build/madsjulia/Mads.jl/src/MadsHelpers.jl:447
Arguments:
nx::Number
ny::Number
x::AbstractVector
: vector of grid x coordinatesy::AbstractVector
: vector of grid y coordinates
Returns:
- 2D grid coordinates based on the coordinates contained in vectors
x
andy
Mads.minimize
— MethodMinimize Julia function using a constrained Levenberg-Marquardt technique
Mads.calibrate(madsdata; tolX=1e-3, tolG=1e-6, maxEval=1000, maxIter=100, maxJacobians=100, lambda=100.0, lambda_mu=10.0, np_lambda=10, show_trace=false, usenaive=false)
Methods:
Mads.calibrate(madsdata::AbstractDict; tolX, tolG, tolOF, tolOFcount, minOF, maxEval, maxIter, maxJacobians, lambda, lambda_mu, np_lambda, show_trace, quiet, usenaive, save_results, localsa, parallel_optimization)
:/home/travis/build/madsjulia/Mads.jl/src/MadsCalibrate.jl:195
Arguments:
madsdata::AbstractDict
Keywords:
lambda
: initial Levenberg-Marquardt lambda [default=100.0
]lambda_mu
: lambda multiplication factor [default=10.0
]localsa
maxEval
: maximum number of model evaluations [default=1000
]maxIter
: maximum number of optimization iterations [default=100
]maxJacobians
: maximum number of Jacobian solves [default=100
]minOF
: objective function update tolerance [default=1e-3
]np_lambda
: number of parallel lambda solves [default=10
]parallel_optimization
quiet
save_results
show_trace
: shows solution trace [default=false
]tolG
: parameter space update tolerance [default=1e-6
]tolOF
: objective function update tolerance [default=1e-3
]tolOFcount
: number of Jacobian runs with small objective function change [default=5
]tolX
: parameter space tolerance [default=1e-4
]usenaive
Returns:
- vector with the optimal parameter values at the minimum
- optimization algorithm results (e.g. results.minimizer)
Mads.mkdir
— MethodCreate a directory (if does not already exist)
Methods:
Mads.mkdir(dirname::AbstractString)
:/home/travis/build/madsjulia/Mads.jl/src/MadsIO.jl:1502
Arguments:
dirname::AbstractString
: directory
Mads.modelinformationcriteria
— FunctionModel section information criteria
Methods:
Mads.modelinformationcriteria(madsdata::AbstractDict)
:/home/travis/build/madsjulia/Mads.jl/src/MadsModelSelection.jl:11
Mads.modelinformationcriteria(madsdata::AbstractDict, par::Array{Float64})
:/home/travis/build/madsjulia/Mads.jl/src/MadsModelSelection.jl:11
Arguments:
madsdata::AbstractDict
: MADS problem dictionarypar::Array{Float64}
: parameter array
Mads.modobsweights!
— FunctionModify (multiply) observation weights in the MADS problem dictionary
Methods:
Mads.modobsweights!(madsdata::AbstractDict, value::Number)
:/home/travis/build/madsjulia/Mads.jl/src/MadsObservations.jl:314
Mads.modobsweights!(madsdata::AbstractDict, value::Number, obskeys::AbstractVector)
:/home/travis/build/madsjulia/Mads.jl/src/MadsObservations.jl:314
Arguments:
madsdata::AbstractDict
: MADS problem dictionaryobskeys::AbstractVector
value::Number
: value for modifing observation weights
Mads.modwellweights!
— FunctionModify (multiply) well weights in the MADS problem dictionary
Methods:
Mads.modwellweights!(madsdata::AbstractDict, value::Number)
:/home/travis/build/madsjulia/Mads.jl/src/MadsObservations.jl:361
Mads.modwellweights!(madsdata::AbstractDict, value::Number, wellkeys::AbstractVector)
:/home/travis/build/madsjulia/Mads.jl/src/MadsObservations.jl:361
Arguments:
madsdata::AbstractDict
: MADS problem dictionaryvalue::Number
: value for well weightswellkeys::AbstractVector
Mads.montecarlo
— MethodMonte Carlo analysis
Methods:
Mads.montecarlo(madsdata::AbstractDict; compute, N, filename)
:/home/travis/build/madsjulia/Mads.jl/src/MadsMonteCarlo.jl:208
Arguments:
madsdata::AbstractDict
: MADS problem dictionary
Keywords:
N
: number of samples [default=100
]compute
filename
: file name to save Monte-Carlo results
Returns:
- parameter dictionary containing the data arrays
Dumps:
- YAML output file with the parameter dictionary containing the data arrays
Example:
Mads.montecarlo(madsdata; N=100)
Mads.naive_get_deltax
— MethodNaive Levenberg-Marquardt optimization: get the LM parameter space step
Methods:
Mads.naive_get_deltax(JpJ::AbstractMatrix{Float64}, Jp::AbstractMatrix{Float64}, f0::AbstractVector{Float64}, lambda::Number)
:/home/travis/build/madsjulia/Mads.jl/src/MadsLevenbergMarquardt.jl:264
Arguments:
Jp::AbstractMatrix{Float64}
: Jacobian matrix times model parametersJpJ::AbstractMatrix{Float64}
: Jacobian matrix times model parameters times transposed Jacobian matrixf0::AbstractVector{Float64}
: initial model observationslambda::Number
: Levenberg-Marquardt lambda
Returns:
- the LM parameter space step
Mads.naive_levenberg_marquardt
— FunctionNaive Levenberg-Marquardt optimization
Methods:
Mads.naive_levenberg_marquardt(f::Function, g::Function, x0::AbstractVector{Float64})
:/home/travis/build/madsjulia/Mads.jl/src/MadsLevenbergMarquardt.jl:314
Mads.naive_levenberg_marquardt(f::Function, g::Function, x0::AbstractVector{Float64}, o::Function; maxIter, maxEval, lambda, lambda_mu, np_lambda)
:/home/travis/build/madsjulia/Mads.jl/src/MadsLevenbergMarquardt.jl:314
Arguments:
f::Function
: forward model functiong::Function
: gradient function for the forward modelo::Function
: objective function [default=x->(x'*x)[1]]x0::AbstractVector{Float64}
: initial parameter guess
Keywords:
lambda
: initial Levenberg-Marquardt lambda [default=100
]lambda_mu
: lambda multiplication factor μ [default=10
]maxEval
: maximum number of model evaluations [default=101
]maxIter
: maximum number of optimization iterations [default=10
]np_lambda
: number of parallel lambda solves [default=10
]
Returns:
Mads.naive_lm_iteration
— MethodNaive Levenberg-Marquardt optimization: perform LM iteration
Methods:
Mads.naive_lm_iteration(f::Function, g::Function, o::Function, x0::AbstractVector{Float64}, f0::AbstractVector{Float64}, lambdas::AbstractVector{Float64})
:/home/travis/build/madsjulia/Mads.jl/src/MadsLevenbergMarquardt.jl:285
Arguments:
f0::AbstractVector{Float64}
: initial model observationsf::Function
: forward model functiong::Function
: gradient function for the forward modellambdas::AbstractVector{Float64}
: Levenberg-Marquardt lambdaso::Function
: objective functionx0::AbstractVector{Float64}
: initial parameter guess
Returns:
Mads.noplot
— MethodDisable MADS plotting
Methods:
Mads.noplot()
:/home/travis/build/madsjulia/Mads.jl/src/MadsParallel.jl:239
Mads.notebook
— MethodExecute Jupyter notebook in IJulia or as a script
Methods:
Mads.notebook(rootname::AbstractString; script, notebook_directory, check)
:/home/travis/build/madsjulia/Mads.jl/src/MadsNotebooks.jl:20
Arguments:
rootname::AbstractString
: notebook root name
Keywords:
check
: check of notebook existsnotebook_directory
: notebook directoryscript
: execute as a script
Mads.notebook_check
— MethodCheck is Jupyter notebook exists
Methods:
Mads.notebook_check(rootname::AbstractString; notebook_directory)
:/home/travis/build/madsjulia/Mads.jl/src/MadsNotebooks.jl:101
Arguments:
rootname::AbstractString
: notebook root name
Keywords:
notebook_directory
: notebook directory
Mads.notebook_export
— MethodExport Jupyter notebook in html, markdown, latex, and script versions
Methods:
Mads.notebook_export(rootname::AbstractString; notebook_directory)
:/home/travis/build/madsjulia/Mads.jl/src/MadsNotebooks.jl:67
Arguments:
rootname::AbstractString
: notebook root name
Keywords:
notebook_directory
: notebook directory
Mads.notebooks
— MethodOpen Jupyter in the Mads notebook directory
Methods:
Mads.notebooks(; notebook_directory)
:/home/travis/build/madsjulia/Mads.jl/src/MadsNotebooks.jl:52
Keywords:
notebook_directory
: notebook directory
Mads.notebookscript
— MethodExecute Jupyter notebook as a script
Methods:
Mads.notebookscript(a...; script, notebook_directory, k...)
:/home/travis/build/madsjulia/Mads.jl/src/MadsNotebooks.jl:9
Keywords:
notebook_directory
: notebook directoryscript
: execute as a script
Mads.obslineoccursin
— MethodMatch an instruction line in the Mads instruction file with model input file
Methods:
Mads.obslineoccursin(obsline::AbstractString, regexs::Vector{Regex})
:/home/travis/build/madsjulia/Mads.jl/src/MadsIO.jl:1157
Arguments:
obsline::AbstractString
: instruction lineregexs::Vector{Regex}
: regular expressions
Returns:
- true or false
Mads.of
— FunctionCompute objective function
Methods:
Mads.of(madsdata::AbstractDict, d::AbstractDict; filter)
:/home/travis/build/madsjulia/Mads.jl/src/MadsLevenbergMarquardt.jl:54
Mads.of(madsdata::AbstractDict, resultvec::AbstractVector; filter)
:/home/travis/build/madsjulia/Mads.jl/src/MadsLevenbergMarquardt.jl:50
Mads.of(madsdata::AbstractDict; filter)
:/home/travis/build/madsjulia/Mads.jl/src/MadsLevenbergMarquardt.jl:65
Arguments:
d::AbstractDict
madsdata::AbstractDict
: MADS problem dictionaryresultvec::AbstractVector
: result vector
Keywords:
filter
Mads.parallel_optimization_off
— MethodTurn off parallel optimization of jacobians and lambdas
Methods:
Mads.parallel_optimization_off()
:/home/travis/build/madsjulia/Mads.jl/src/MadsHelpers.jl:229
Mads.parallel_optimization_on
— MethodTurn on parallel optimization of jacobians and lambdas
Methods:
Mads.parallel_optimization_on()
:/home/travis/build/madsjulia/Mads.jl/src/MadsHelpers.jl:220
Mads.paramarray2dict
— MethodConvert a parameter array to a parameter dictionary of arrays
Methods:
Mads.paramarray2dict(madsdata::AbstractDict, array::Array)
:/home/travis/build/madsjulia/Mads.jl/src/MadsMonteCarlo.jl:278
Arguments:
array::Array
: parameter arraymadsdata::AbstractDict
: MADS problem dictionary
Returns:
- a parameter dictionary of arrays
Mads.paramdict2array
— MethodConvert a parameter dictionary of arrays to a parameter array
Methods:
Mads.paramdict2array(dict::AbstractDict)
:/home/travis/build/madsjulia/Mads.jl/src/MadsMonteCarlo.jl:297
Arguments:
dict::AbstractDict
: parameter dictionary of arrays
Returns:
- a parameter array
Mads.parsemadsdata!
— MethodParse loaded MADS problem dictionary
Methods:
Mads.parsemadsdata!(madsdata::AbstractDict)
:/home/travis/build/madsjulia/Mads.jl/src/MadsIO.jl:288
Arguments:
madsdata::AbstractDict
: MADS problem dictionary
Mads.parsenodenames
— FunctionParse string with node names defined in SLURM
Methods:
Mads.parsenodenames(nodenames::AbstractString)
:/home/travis/build/madsjulia/Mads.jl/src/MadsParallel.jl:208
Mads.parsenodenames(nodenames::AbstractString, ntasks_per_node::Integer)
:/home/travis/build/madsjulia/Mads.jl/src/MadsParallel.jl:208
Arguments:
nodenames::AbstractString
: string with node names defined in SLURMntasks_per_node::Integer
: number of parallel tasks per node [default=1
]
Returns:
- vector with names of compute nodes (hosts)
Mads.partialof
— MethodCompute the sum of squared residuals for observations that match a regular expression
Methods:
Mads.partialof(madsdata::AbstractDict, resultdict::AbstractDict, regex::Regex)
:/home/travis/build/madsjulia/Mads.jl/src/MadsLevenbergMarquardt.jl:91
Arguments:
madsdata::AbstractDict
: MADS problem dictionaryregex::Regex
: regular expressionresultdict::AbstractDict
: result dictionary
Returns:
- the sum of squared residuals for observations that match the regular expression
Mads.pkgversion_old
— MethodGet package version
Methods:
Mads.pkgversion_old(modulestr::AbstractString)
:/home/travis/build/madsjulia/Mads.jl/src/MadsHelpers.jl:545
Arguments:
modulestr::AbstractString
Returns:
- package version
Mads.printSAresults
— MethodPrint sensitivity analysis results
Methods:
Mads.printSAresults(madsdata::AbstractDict, results::AbstractDict)
:/home/travis/build/madsjulia/Mads.jl/src/MadsSensitivityAnalysis.jl:946
Arguments:
madsdata::AbstractDict
: MADS problem dictionaryresults::AbstractDict
: dictionary with sensitivity analysis results
Mads.printSAresults2
— MethodPrint sensitivity analysis results (method 2)
Methods:
Mads.printSAresults2(madsdata::AbstractDict, results::AbstractDict)
:/home/travis/build/madsjulia/Mads.jl/src/MadsSensitivityAnalysis.jl:1028
Arguments:
madsdata::AbstractDict
: MADS problem dictionaryresults::AbstractDict
: dictionary with sensitivity analysis results
Mads.printerrormsg
— MethodPrint error message
Methods:
Mads.printerrormsg(errmsg)
:/home/travis/build/madsjulia/Mads.jl/src/MadsHelpers.jl:438
Arguments:
errmsg
: error message
Mads.printobservations
— FunctionPrint (emit) observations in the MADS problem dictionary
Methods:
Mads.printobservations(madsdata::AbstractDict)
:/home/travis/build/madsjulia/Mads.jl/src/MadsObservations.jl:435
Mads.printobservations(madsdata::AbstractDict, filename::AbstractString; json)
:/home/travis/build/madsjulia/Mads.jl/src/MadsObservations.jl:443
Mads.printobservations(madsdata::AbstractDict, io::IO)
:/home/travis/build/madsjulia/Mads.jl/src/MadsObservations.jl:435
Mads.printobservations(madsdata::AbstractDict, io::IO, obskeys::AbstractVector)
:/home/travis/build/madsjulia/Mads.jl/src/MadsObservations.jl:435
Arguments:
filename::AbstractString
: output file nameio::IO
: output streammadsdata::AbstractDict
: MADS problem dictionaryobskeys::AbstractVector
Keywords:
json
Mads.pull
— FunctionPull (checkout) the latest version of Mads modules
Methods:
Mads.pull()
:/home/travis/build/madsjulia/Mads.jl/src/MadsModules.jl:91
Mads.pull(modulename::AbstractString; kw...)
:/home/travis/build/madsjulia/Mads.jl/src/MadsModules.jl:91
Arguments:
modulename::AbstractString
: module name
Mads.push
— FunctionPush the latest version of Mads modules in the default remote repository
Methods:
Mads.push()
:/home/travis/build/madsjulia/Mads.jl/src/MadsModules.jl:166
Mads.push(modulename::AbstractString)
:/home/travis/build/madsjulia/Mads.jl/src/MadsModules.jl:166
Arguments:
modulename::AbstractString
: module name
Mads.quietoff
— MethodMake MADS not quiet
Methods:
Mads.quietoff()
:/home/travis/build/madsjulia/Mads.jl/src/MadsHelpers.jl:112
Mads.quieton
— MethodMake MADS quiet
Methods:
Mads.quieton()
:/home/travis/build/madsjulia/Mads.jl/src/MadsHelpers.jl:103
Mads.readasciipredictions
— MethodRead MADS predictions from an ASCII file
Methods:
Mads.readasciipredictions(filename::AbstractString)
:/home/travis/build/madsjulia/Mads.jl/src/MadsASCII.jl:43
Arguments:
filename::AbstractString
: ASCII file name
Returns:
- MADS predictions
Mads.readmodeloutput
— MethodRead model outputs saved for MADS
Methods:
Mads.readmodeloutput(madsdata::AbstractDict; obskeys)
:/home/travis/build/madsjulia/Mads.jl/src/MadsIO.jl:910
Arguments:
madsdata::AbstractDict
: MADS problem dictionary
Keywords:
obskeys
: observation keys [default=getobskeys(madsdata)]
Mads.readobservations
— FunctionRead observations
Methods:
Mads.readobservations(madsdata::AbstractDict)
:/home/travis/build/madsjulia/Mads.jl/src/MadsIO.jl:1277
Mads.readobservations(madsdata::AbstractDict, obskeys::AbstractVector)
:/home/travis/build/madsjulia/Mads.jl/src/MadsIO.jl:1277
Arguments:
madsdata::AbstractDict
: MADS problem dictionaryobskeys::AbstractVector
: observation keys [default=getobskeys(madsdata)
]
Returns:
- dictionary with Mads observations
Mads.readobservations_cmads
— MethodRead observations using C MADS dynamic library
Methods:
Mads.readobservations_cmads(madsdata::AbstractDict)
:/home/travis/build/madsjulia/Mads.jl/src/MadsCMads.jl:13
Arguments:
madsdata::AbstractDict
: Mads problem dictionary
Returns:
- observations
Mads.readyamlpredictions
— MethodRead MADS model predictions from a YAML file filename
Methods:
Mads.readyamlpredictions(filename::AbstractString)
:/home/travis/build/madsjulia/Mads.jl/src/MadsYAML.jl:104
Arguments:
filename::AbstractString
: file name
Returns:
- data in yaml input file
Mads.recursivemkdir
— MethodCreate directories recursively (if does not already exist)
Methods:
Mads.recursivemkdir(s::AbstractString; filename)
:/home/travis/build/madsjulia/Mads.jl/src/MadsIO.jl:1514
Arguments:
s::AbstractString
Keywords:
filename
Mads.recursivermdir
— MethodRemove directories recursively
Methods:
Mads.recursivermdir(s::AbstractString; filename)
:/home/travis/build/madsjulia/Mads.jl/src/MadsIO.jl:1559
Arguments:
s::AbstractString
Keywords:
filename
Mads.regexs2obs
— MethodGet observations for a set of regular expressions
Methods:
Mads.regexs2obs(obsline::AbstractString, regexs::Vector{Regex}, obsnames::Vector{String}, getparamhere::Vector{Bool})
:/home/travis/build/madsjulia/Mads.jl/src/MadsIO.jl:1178
Arguments:
getparamhere::Vector{Bool}
: parametersobsline::AbstractString
: observation lineobsnames::Vector{String}
: observation namesregexs::Vector{Regex}
: regular expressions
Returns:
obsdict
: observations
Mads.removesource!
— FunctionRemove a contamination source
Methods:
Mads.removesource!(madsdata::AbstractDict)
:/home/travis/build/madsjulia/Mads.jl/src/MadsAnasol.jl:49
Mads.removesource!(madsdata::AbstractDict, sourceid::Int64)
:/home/travis/build/madsjulia/Mads.jl/src/MadsAnasol.jl:49
Arguments:
madsdata::AbstractDict
: MADS problem dictionarysourceid::Int64
: source id [default=0
]
Mads.removesourceparameters!
— MethodRemove contaminant source parameters
Methods:
Mads.removesourceparameters!(madsdata::AbstractDict)
:/home/travis/build/madsjulia/Mads.jl/src/MadsAnasol.jl:134
Arguments:
madsdata::AbstractDict
: MADS problem dictionary
Mads.required
— FunctionLists modules required by a module (Mads by default)
Methods:
Mads.required()
:/home/travis/build/madsjulia/Mads.jl/src/MadsModules.jl:45
Mads.required(modulename::AbstractString)
:/home/travis/build/madsjulia/Mads.jl/src/MadsModules.jl:45
Mads.required(modulename::AbstractString, filtermodule::AbstractString)
:/home/travis/build/madsjulia/Mads.jl/src/MadsModules.jl:45
Arguments:
filtermodule::AbstractString
: filter module namemodulename::AbstractString
: module name [default="Mads"
]
Returns:
- filtered modules
Mads.resetmodelruns
— MethodReset the model runs count to be equal to zero
Methods:
Mads.resetmodelruns()
:/home/travis/build/madsjulia/Mads.jl/src/MadsHelpers.jl:268
Mads.residuals
— FunctionCompute residuals
Methods:
Mads.residuals(madsdata::AbstractDict)
:/home/travis/build/madsjulia/Mads.jl/src/MadsLevenbergMarquardt.jl:32
Mads.residuals(madsdata::AbstractDict, resultdict::AbstractDict)
:/home/travis/build/madsjulia/Mads.jl/src/MadsLevenbergMarquardt.jl:29
Mads.residuals(madsdata::AbstractDict, resultvec::AbstractVector)
:/home/travis/build/madsjulia/Mads.jl/src/MadsLevenbergMarquardt.jl:6
Arguments:
madsdata::AbstractDict
: MADS problem dictionaryresultdict::AbstractDict
: result dictionaryresultvec::AbstractVector
: result vector
Returns:
Mads.restartoff
— MethodMADS restart off
Methods:
Mads.restartoff()
:/home/travis/build/madsjulia/Mads.jl/src/MadsHelpers.jl:84
Mads.restarton
— MethodMADS restart on
Methods:
Mads.restarton()
:/home/travis/build/madsjulia/Mads.jl/src/MadsHelpers.jl:75
Mads.reweighsamples
— MethodReweigh samples using importance sampling – returns a vector of log-likelihoods after reweighing
Methods:
Mads.reweighsamples(madsdata::AbstractDict, predictions::Array, oldllhoods::AbstractVector)
:/home/travis/build/madsjulia/Mads.jl/src/MadsSensitivityAnalysis.jl:331
Arguments:
madsdata::AbstractDict
: MADS problem dictionaryoldllhoods::AbstractVector
: the log likelihoods of the parameters in the old distributionpredictions::Array
: the model predictions for each of the samples
Returns:
- vector of log-likelihoods after reweighing
Mads.rmdir
— MethodRemove directory
Methods:
Mads.rmdir(dir::AbstractString; path)
:/home/travis/build/madsjulia/Mads.jl/src/MadsIO.jl:1374
Arguments:
dir::AbstractString
: directory to be removed
Keywords:
path
: path of the directory [default=current path
]
Mads.rmfile
— MethodRemove file
Methods:
Mads.rmfile(filename::AbstractString; path)
:/home/travis/build/madsjulia/Mads.jl/src/MadsIO.jl:1390
Arguments:
filename::AbstractString
: file to be removed
Keywords:
path
: path of the file [default=current path
]
Mads.rmfiles
— MethodRemove files
Methods:
Mads.rmfile(filename::AbstractString; path)
:/home/travis/build/madsjulia/Mads.jl/src/MadsIO.jl:1390
Arguments:
filename::AbstractString
Keywords:
path
: path of the file [default=current path
]
Mads.rmfiles_ext
— MethodRemove files with extension ext
Methods:
Mads.rmfiles_ext(ext::AbstractString; path)
:/home/travis/build/madsjulia/Mads.jl/src/MadsIO.jl:1419
Arguments:
ext::AbstractString
: extension
Keywords:
path
: path of the files to be removed [default=.
]
Mads.rmfiles_root
— MethodRemove files with root root
Methods:
Mads.rmfiles_root(root::AbstractString; path)
:/home/travis/build/madsjulia/Mads.jl/src/MadsIO.jl:1432
Arguments:
root::AbstractString
: root
Keywords:
path
: path of the files to be removed [default=.
]
Mads.rosenbrock
— MethodRosenbrock test function
Methods:
Mads.rosenbrock(x::AbstractVector)
:/home/travis/build/madsjulia/Mads.jl/src/MadsTestFunctions.jl:40
Arguments:
x::AbstractVector
: parameter vector
Returns:
- test result
Mads.rosenbrock2_gradient_lm
— MethodParameter gradients of the Rosenbrock test function
Methods:
Mads.rosenbrock2_gradient_lm(x::AbstractVector)
:/home/travis/build/madsjulia/Mads.jl/src/MadsTestFunctions.jl:21
Arguments:
x::AbstractVector
: parameter vector
Returns:
- parameter gradients
Mads.rosenbrock2_lm
— MethodRosenbrock test function (more difficult to solve)
Methods:
Mads.rosenbrock2_lm(x::AbstractVector)
:/home/travis/build/madsjulia/Mads.jl/src/MadsTestFunctions.jl:7
Arguments:
x::AbstractVector
: parameter vector
Mads.rosenbrock_gradient!
— MethodParameter gradients of the Rosenbrock test function
Methods:
Mads.rosenbrock_gradient!(x::AbstractVector, grad::AbstractVector)
:/home/travis/build/madsjulia/Mads.jl/src/MadsTestFunctions.jl:65
Arguments:
grad::AbstractVector
: gradient vectorx::AbstractVector
: parameter vector
Mads.rosenbrock_gradient_lm
— MethodParameter gradients of the Rosenbrock test function for LM optimization (returns the gradients for the 2 components separately)
Methods:
Mads.rosenbrock_gradient_lm(x::AbstractVector; dx, center)
:/home/travis/build/madsjulia/Mads.jl/src/MadsTestFunctions.jl:82
Arguments:
x::AbstractVector
: parameter vector
Keywords:
center
: array with parameter observations at the center applied to compute numerical derivatives [default=Vector{Float64}(undef, 0)
]dx
: apply parameter step to compute numerical derivatives [default=false
]
Returns:
- parameter gradients
Mads.rosenbrock_hessian!
— MethodParameter Hessian of the Rosenbrock test function
Methods:
Mads.rosenbrock_hessian!(x::AbstractVector, hess::AbstractMatrix)
:/home/travis/build/madsjulia/Mads.jl/src/MadsTestFunctions.jl:98
Arguments:
hess::AbstractMatrix
: Hessian matrixx::AbstractVector
: parameter vector
Mads.rosenbrock_lm
— MethodRosenbrock test function for LM optimization (returns the 2 components separately)
Methods:
Mads.rosenbrock_lm(x::AbstractVector)
:/home/travis/build/madsjulia/Mads.jl/src/MadsTestFunctions.jl:54
Arguments:
x::AbstractVector
: parameter vector
Returns:
- test result
Mads.runcmd
— FunctionRun external command and pipe stdout and stderr
Methods:
Mads.runcmd(cmd::Cmd; quiet, pipe, waittime)
:/home/travis/build/madsjulia/Mads.jl/src/MadsExecute.jl:39
Mads.runcmd(cmdstring::AbstractString; quiet, pipe, waittime)
:/home/travis/build/madsjulia/Mads.jl/src/MadsExecute.jl:98
Arguments:
cmd::Cmd
: command (as a julia command; e.g. `ls`)cmdstring::AbstractString
: command (as a string; e.g. "ls")
Keywords:
pipe
: [default=false
]quiet
: [default=Mads.quiet
]waittime
: wait time is second [default=Mads.executionwaittime
]
Returns:
- command output
- command error message
Mads.runremote
— FunctionRun remote command on a series of servers
Methods:
Mads.runremote(cmd::AbstractString)
:/home/travis/build/madsjulia/Mads.jl/src/MadsParallel.jl:284
Mads.runremote(cmd::AbstractString, nodenames::Vector{String})
:/home/travis/build/madsjulia/Mads.jl/src/MadsParallel.jl:284
Arguments:
cmd::AbstractString
: remote commandnodenames::Vector{String}
: names of machines/nodes [default=madsservers
]
Returns:
- output of running remote command
Mads.saltelli
— MethodSaltelli sensitivity analysis
Methods:
Mads.saltelli(madsdata::AbstractDict; N, seed, rng, restartdir, parallel, checkpointfrequency, save, load)
:/home/travis/build/madsjulia/Mads.jl/src/MadsSensitivityAnalysis.jl:644
Arguments:
madsdata::AbstractDict
: MADS problem dictionary
Keywords:
N
: number of samples [default=100
]checkpointfrequency
: check point frequency [default=N
]load
parallel
: set to true if the model runs should be performed in parallel [default=false
]restartdir
: directory where files will be stored containing model results for fast simulation restartsrng
save
seed
: random seed [default=0
]
Mads.saltellibrute
— MethodSaltelli sensitivity analysis (brute force)
Methods:
Mads.saltellibrute(madsdata::AbstractDict; N, seed, rng, restartdir)
:/home/travis/build/madsjulia/Mads.jl/src/MadsSensitivityAnalysis.jl:456
Arguments:
madsdata::AbstractDict
: MADS problem dictionary
Keywords:
N
: number of samples [default=1000
]restartdir
: directory where files will be stored containing model results for fast simulation restartsrng
seed
: random seed [default=0
]
Mads.saltellibruteparallel
— MethodParallel version of saltellibrute
Mads.saltelliparallel
— MethodParallel version of saltelli
Mads.sampling
— MethodMethods:
Mads.sampling(param::AbstractVector, J::Array, numsamples::Number; seed, rng, scale)
:/home/travis/build/madsjulia/Mads.jl/src/MadsSensitivityAnalysis.jl:280
Arguments:
J::Array
: Jacobian matrixnumsamples::Number
: Number of samplesparam::AbstractVector
: Parameter vector
Keywords:
rng
scale
: data scaling [default=1
]seed
: random esee [default=0
]
Returns:
- generated samples (vector or array)
- vector of log-likelihoods
Mads.savemadsfile
— FunctionSave MADS problem dictionary madsdata
in MADS input file filename
Methods:
Mads.savemadsfile(madsdata::AbstractDict)
:/home/travis/build/madsjulia/Mads.jl/src/MadsIO.jl:432
Mads.savemadsfile(madsdata::AbstractDict, filename::AbstractString; observations_separate, filenameobs)
:/home/travis/build/madsjulia/Mads.jl/src/MadsIO.jl:432
Mads.savemadsfile(madsdata::AbstractDict, parameters::AbstractDict)
:/home/travis/build/madsjulia/Mads.jl/src/MadsIO.jl:449
Mads.savemadsfile(madsdata::AbstractDict, parameters::AbstractDict, filename::AbstractString; explicit, observations_separate)
:/home/travis/build/madsjulia/Mads.jl/src/MadsIO.jl:449
Arguments:
filename::AbstractString
: input file name (e.g.input_file_name.mads
)madsdata::AbstractDict
: MADS problem dictionaryparameters::AbstractDict
: Dictionary with parameters (optional)
Keywords:
explicit
: iftrue
ignores MADS YAML file modifications and rereads the original input file [default=false
]filenameobs
observations_separate
Example:
Mads.savemadsfile(madsdata)
Mads.savemadsfile(madsdata, "test.mads")
Mads.savemadsfile(madsdata, parameters, "test.mads")
Mads.savemadsfile(madsdata, parameters, "test.mads", explicit=true)
Mads.savemcmcresults
— MethodSave MCMC chain in a file
Methods:
Mads.savemcmcresults(chain::Array, filename::AbstractString)
:/home/travis/build/madsjulia/Mads.jl/src/MadsMonteCarlo.jl:163
Arguments:
chain::Array
: MCMC chainfilename::AbstractString
: file name
Dumps:
- the file containing MCMC chain
Mads.savesaltellirestart
— MethodSave Saltelli sensitivity analysis results for fast simulation restarts
Methods:
Mads.savesaltellirestart(evalmat::Array, matname::AbstractString, restartdir::AbstractString)
:/home/travis/build/madsjulia/Mads.jl/src/MadsSensitivityAnalysis.jl:625
Arguments:
evalmat::Array
: saved arraymatname::AbstractString
: matrix (array) name (defines the name of the loaded file)restartdir::AbstractString
: directory where files will be stored containing model results for fast simulation restarts
Mads.searchdir
— FunctionGet files in the current directory or in a directory defined by path
matching pattern key
which can be a string or regular expression
Methods:
Mads.searchdir(key::AbstractString; path)
:/home/travis/build/madsjulia/Mads.jl/src/MadsIO.jl:956
Mads.searchdir(key::Regex; path)
:/home/travis/build/madsjulia/Mads.jl/src/MadsIO.jl:955
Arguments:
key::AbstractString
: matching pattern for Mads input files (string or regular expression accepted)key::Regex
: matching pattern for Mads input files (string or regular expression accepted)
Keywords:
path
: search directory for the mads input files [default=.
]
Returns:
filename
: an array with file names matching the pattern in the specified directory
Examples:
- `Mads.searchdir("a")`
- `Mads.searchdir(r"[A-B]"; path = ".")`
- `Mads.searchdir(r".*.cov"; path = ".")`
Mads.set_nprocs_per_task
— FunctionSet number of processors needed for each parallel task at each node
Methods:
Mads.set_nprocs_per_task()
:/home/travis/build/madsjulia/Mads.jl/src/MadsHelpers.jl:66
Mads.set_nprocs_per_task(local_nprocs_per_task::Integer)
:/home/travis/build/madsjulia/Mads.jl/src/MadsHelpers.jl:66
Arguments:
local_nprocs_per_task::Integer
Mads.setallparamsoff!
— MethodSet all parameters OFF
Methods:
Mads.setallparamsoff!(madsdata::AbstractDict; filter)
:/home/travis/build/madsjulia/Mads.jl/src/MadsParameters.jl:466
Arguments:
madsdata::AbstractDict
: MADS problem dictionary
Keywords:
filter
: parameter filter
Mads.setallparamson!
— MethodSet all parameters ON
Methods:
Mads.setallparamson!(madsdata::AbstractDict; filter)
:/home/travis/build/madsjulia/Mads.jl/src/MadsParameters.jl:452
Arguments:
madsdata::AbstractDict
: MADS problem dictionary
Keywords:
filter
: parameter filter
Mads.setdebuglevel
— MethodSet MADS debug level
Methods:
Mads.setdebuglevel(level::Int64)
:/home/travis/build/madsjulia/Mads.jl/src/MadsHelpers.jl:239
Arguments:
level::Int64
: debug level
Mads.setdir
— FunctionSet the working directory (for parallel environments)
Methods:
Mads.setdir()
:/home/travis/build/madsjulia/Mads.jl/src/MadsParallel.jl:254
Mads.setdir(dir)
:/home/travis/build/madsjulia/Mads.jl/src/MadsParallel.jl:249
Arguments:
dir
: directory
Example:
@Distributed.everywhere Mads.setdir()
@Distributed.everywhere Mads.setdir("/home/monty")
Mads.setdpi
— MethodSet image dpi
Methods:
Mads.setdpi(dpi::Integer)
:/home/travis/build/madsjulia/Mads.jl/src/MadsHelpers.jl:175
Arguments:
dpi::Integer
Mads.setexecutionwaittime
— MethodSet maximum execution wait time for forward model runs in seconds
Methods:
Mads.setexecutionwaittime(waitime::Float64)
:/home/travis/build/madsjulia/Mads.jl/src/MadsHelpers.jl:259
Arguments:
waitime::Float64
: maximum execution wait time for forward model runs in seconds
Mads.setmadsinputfile
— MethodSet a default MADS input file
Methods:
Mads.setmadsinputfile(filename::AbstractString)
:/home/travis/build/madsjulia/Mads.jl/src/MadsIO.jl:509
Arguments:
filename::AbstractString
: input file name (e.g.input_file_name.mads
)
Mads.setmadsservers
— FunctionGenerate a list of Mads servers
Methods:
Mads.setmadsservers()
:/home/travis/build/madsjulia/Mads.jl/src/MadsParallel.jl:339
Mads.setmadsservers(first::Int64)
:/home/travis/build/madsjulia/Mads.jl/src/MadsParallel.jl:339
Mads.setmadsservers(first::Int64, last::Int64)
:/home/travis/build/madsjulia/Mads.jl/src/MadsParallel.jl:339
Arguments:
first::Int64
: first [default=0
]last::Int64
: last [default=18
]
Returns
- array string of mads servers
Mads.setmodelinputs
— FunctionSet model input files; delete files where model output should be saved for MADS
Methods:
Mads.setmodelinputs(madsdata::AbstractDict)
:/home/travis/build/madsjulia/Mads.jl/src/MadsIO.jl:822
Mads.setmodelinputs(madsdata::AbstractDict, parameters::AbstractDict; path)
:/home/travis/build/madsjulia/Mads.jl/src/MadsIO.jl:822
Arguments:
madsdata::AbstractDict
: MADS problem dictionaryparameters::AbstractDict
: parameters
Keywords:
path
: path for the files [default=.
]
Mads.setnewmadsfilename
— FunctionSet new mads file name
Methods:
Mads.setnewmadsfilename(filename::AbstractString)
:/home/travis/build/madsjulia/Mads.jl/src/MadsIO.jl:672
Mads.setnewmadsfilename(madsdata::AbstractDict)
:/home/travis/build/madsjulia/Mads.jl/src/MadsIO.jl:669
Arguments:
filename::AbstractString
: file namemadsdata::AbstractDict
: MADS problem dictionary
Returns:
- new file name
Mads.setobservationtargets!
— MethodSet observations (calibration targets) in the MADS problem dictionary based on a predictions
dictionary
Methods:
Mads.setobservationtargets!(madsdata::AbstractDict, predictions::AbstractDict)
:/home/travis/build/madsjulia/Mads.jl/src/MadsObservations.jl:539
Arguments:
madsdata::AbstractDict
: Mads problem dictionarypredictions::AbstractDict
: dictionary with model predictions
Mads.setobstime!
— FunctionSet observation time based on the observation name in the MADS problem dictionary
Methods:
Mads.setobstime!(madsdata::AbstractDict)
:/home/travis/build/madsjulia/Mads.jl/src/MadsObservations.jl:250
Mads.setobstime!(madsdata::AbstractDict, rx::Regex)
:/home/travis/build/madsjulia/Mads.jl/src/MadsObservations.jl:260
Mads.setobstime!(madsdata::AbstractDict, rx::Regex, obskeys::AbstractVector)
:/home/travis/build/madsjulia/Mads.jl/src/MadsObservations.jl:260
Mads.setobstime!(madsdata::AbstractDict, separator::AbstractString)
:/home/travis/build/madsjulia/Mads.jl/src/MadsObservations.jl:250
Mads.setobstime!(madsdata::AbstractDict, separator::AbstractString, obskeys::AbstractVector)
:/home/travis/build/madsjulia/Mads.jl/src/MadsObservations.jl:250
Arguments:
madsdata::AbstractDict
: MADS problem dictionaryobskeys::AbstractVector
rx::Regex
: regular expression to matchseparator::AbstractString
: separator [default=_
]
Examples:
Mads.setobstime!(madsdata, "_t")
Mads.setobstime!(madsdata, r"[A-x]*_t([0-9,.]+)")
Mads.setobsweights!
— FunctionSet observation weights in the MADS problem dictionary
Methods:
Mads.setobsweights!(madsdata::AbstractDict, v::AbstractVector)
:/home/travis/build/madsjulia/Mads.jl/src/MadsObservations.jl:292
Mads.setobsweights!(madsdata::AbstractDict, v::AbstractVector, obskeys::AbstractVector)
:/home/travis/build/madsjulia/Mads.jl/src/MadsObservations.jl:292
Mads.setobsweights!(madsdata::AbstractDict, value::Number)
:/home/travis/build/madsjulia/Mads.jl/src/MadsObservations.jl:287
Mads.setobsweights!(madsdata::AbstractDict, value::Number, obskeys::AbstractVector)
:/home/travis/build/madsjulia/Mads.jl/src/MadsObservations.jl:287
Arguments:
madsdata::AbstractDict
: MADS problem dictionaryobskeys::AbstractVector
v::AbstractVector
: vector of observation weightsvalue::Number
: value for observation weights
Mads.setparamoff!
— MethodSet a specific parameter with a key parameterkey
OFF
Methods:
Mads.setparamoff!(madsdata::AbstractDict, parameterkey::AbstractString)
:/home/travis/build/madsjulia/Mads.jl/src/MadsParameters.jl:491
Arguments:
madsdata::AbstractDict
: MADS problem dictionaryparameterkey::AbstractString
: parameter key
Mads.setparamon!
— MethodSet a specific parameter with a key parameterkey
ON
Methods:
Mads.setparamon!(madsdata::AbstractDict, parameterkey::AbstractString)
:/home/travis/build/madsjulia/Mads.jl/src/MadsParameters.jl:480
Arguments:
madsdata::AbstractDict
: MADS problem dictionaryparameterkey::AbstractString
: parameter key
Mads.setparamsdistnormal!
— MethodSet normal parameter distributions for all the model parameters in the MADS problem dictionary
Methods:
Mads.setparamsdistnormal!(madsdata::AbstractDict, mean::AbstractVector, stddev::AbstractVector)
:/home/travis/build/madsjulia/Mads.jl/src/MadsParameters.jl:503
Arguments:
madsdata::AbstractDict
: MADS problem dictionarymean::AbstractVector
: array with the mean valuesstddev::AbstractVector
: array with the standard deviation values
Mads.setparamsdistuniform!
— MethodSet uniform parameter distributions for all the model parameters in the MADS problem dictionary
Methods:
Mads.setparamsdistuniform!(madsdata::AbstractDict, min::AbstractVector, max::AbstractVector)
:/home/travis/build/madsjulia/Mads.jl/src/MadsParameters.jl:518
Arguments:
madsdata::AbstractDict
: MADS problem dictionarymax::AbstractVector
: array with the maximum valuesmin::AbstractVector
: array with the minimum values
Mads.setparamsinit!
— FunctionSet initial optimized parameter guesses in the MADS problem dictionary
Methods:
Mads.setparamsinit!(madsdata::AbstractDict, paramdict::AbstractDict)
:/home/travis/build/madsjulia/Mads.jl/src/MadsParameters.jl:319
Mads.setparamsinit!(madsdata::AbstractDict, paramdict::AbstractDict, idx::Int64)
:/home/travis/build/madsjulia/Mads.jl/src/MadsParameters.jl:319
Arguments:
idx::Int64
: index of the dictionary of arrays with initial model parameter valuesmadsdata::AbstractDict
: MADS problem dictionaryparamdict::AbstractDict
: dictionary with initial model parameter values
Mads.setprocs
— FunctionSet the available processors based on environmental variables (supports SLURM only at the moment)
Methods:
Mads.setprocs(; ntasks_per_node, nprocs_per_task, nodenames, mads_servers, test, quiet, veryquiet, dir, exename)
:/home/travis/build/madsjulia/Mads.jl/src/MadsParallel.jl:47
Mads.setprocs(np::Integer)
:/home/travis/build/madsjulia/Mads.jl/src/MadsParallel.jl:44
Mads.setprocs(np::Integer, nt::Integer)
:/home/travis/build/madsjulia/Mads.jl/src/MadsParallel.jl:31
Arguments:
np::Integer
: number of processors [default=1
]nt::Integer
: number of threads[default=1
]
Keywords:
dir
: common directory shared by all the jobsexename
: location of the julia executable (the same version of julia is needed on all the workers)mads_servers
: iftrue
use MADS servers [default=false
]nodenames
: array with names of machines/nodes to be invokednprocs_per_task
: number of processors needed for each parallel task at each node [default=Mads.nprocs_per_task
]ntasks_per_node
: number of parallel tasks per node [default=0
]quiet
: suppress output [default=Mads.quiet
]test
: test the servers and connect to each one ones at a time [default=false
]veryquiet
Returns:
- vector with names of compute nodes (hosts)
Example:
Mads.setprocs()
Mads.setprocs(4)
Mads.setprocs(4, 8)
Mads.setprocs(ntasks_per_node=4)
Mads.setprocs(ntasks_per_node=32, mads_servers=true)
Mads.setprocs(ntasks_per_node=64, nodenames=madsservers)
Mads.setprocs(ntasks_per_node=64, nodenames=["madsmax", "madszem"])
Mads.setprocs(ntasks_per_node=64, nodenames="wc[096-157,160,175]")
Mads.setprocs(ntasks_per_node=64, mads_servers=true, exename="/home/monty/bin/julia", dir="/home/monty")
Mads.setseed
— FunctionSet / get current random seed. seed < 0 gets seed, anything else sets it.
Methods:
Mads.setseed()
:/home/travis/build/madsjulia/Mads.jl/src/MadsHelpers.jl:480
Mads.setseed(seed::Integer)
:/home/travis/build/madsjulia/Mads.jl/src/MadsHelpers.jl:480
Mads.setseed(seed::Integer, quiet::Bool; rng)
:/home/travis/build/madsjulia/Mads.jl/src/MadsHelpers.jl:480
Arguments:
quiet::Bool
: [default=true
]seed::Integer
: random seed
Keywords:
rng
Mads.setsourceinit!
— FunctionSet initial optimized parameter guesses in the MADS problem dictionary for the Source class
Methods:
Mads.setparamsinit!(madsdata::AbstractDict, paramdict::AbstractDict)
:/home/travis/build/madsjulia/Mads.jl/src/MadsParameters.jl:319
Mads.setparamsinit!(madsdata::AbstractDict, paramdict::AbstractDict, idx::Int64)
:/home/travis/build/madsjulia/Mads.jl/src/MadsParameters.jl:319
Arguments:
idx::Int64
: index of the dictionary of arrays with initial model parameter valuesmadsdata::AbstractDict
: MADS problem dictionaryparamdict::AbstractDict
: dictionary with initial model parameter values
Mads.settarget!
— MethodSet observation target
Methods:
Mads.settarget!(o::AbstractDict, target::Number)
:/home/travis/build/madsjulia/Mads.jl/src/MadsObservations.jl:240
Arguments:
o::AbstractDict
: observation datatarget::Number
: observation target
Mads.settime!
— MethodSet observation time
Methods:
Mads.settime!(o::AbstractDict, time::Number)
:/home/travis/build/madsjulia/Mads.jl/src/MadsObservations.jl:162
Arguments:
o::AbstractDict
: observation datatime::Number
: observation time
Mads.setverbositylevel
— MethodSet MADS verbosity level
Methods:
Mads.setverbositylevel(level::Int64)
:/home/travis/build/madsjulia/Mads.jl/src/MadsHelpers.jl:249
Arguments:
level::Int64
: debug level
Mads.setweight!
— MethodSet observation weight
Methods:
Mads.setweight!(o::AbstractDict, weight::Number)
:/home/travis/build/madsjulia/Mads.jl/src/MadsObservations.jl:201
Arguments:
o::AbstractDict
: observation dataweight::Number
: observation weight
Mads.setwellweights!
— FunctionSet well weights in the MADS problem dictionary
Methods:
Mads.setwellweights!(madsdata::AbstractDict, value::Number)
:/home/travis/build/madsjulia/Mads.jl/src/MadsObservations.jl:343
Mads.setwellweights!(madsdata::AbstractDict, value::Number, wellkeys::AbstractVector)
:/home/travis/build/madsjulia/Mads.jl/src/MadsObservations.jl:343
Arguments:
madsdata::AbstractDict
: MADS problem dictionaryvalue::Number
: value for well weightswellkeys::AbstractVector
Mads.showallparameters
— FunctionShow all parameters in the MADS problem dictionary
Methods:
Mads.showallparameters(madsdata::AbstractDict)
:/home/travis/build/madsjulia/Mads.jl/src/MadsParameters.jl:579
Mads.showallparameters(madsdata::AbstractDict, parkeys::AbstractVector)
:/home/travis/build/madsjulia/Mads.jl/src/MadsParameters.jl:579
Mads.showallparameters(madsdata::AbstractDict, result::AbstractDict)
:/home/travis/build/madsjulia/Mads.jl/src/MadsParameters.jl:583
Arguments:
madsdata::AbstractDict
: MADS problem dictionaryparkeys::AbstractVector
result::AbstractDict
Mads.showobservations
— FunctionShow observations in the MADS problem dictionary
Methods:
Mads.showobservations(madsdata::AbstractDict)
:/home/travis/build/madsjulia/Mads.jl/src/MadsObservations.jl:399
Mads.showobservations(madsdata::AbstractDict, obskeys::AbstractVector)
:/home/travis/build/madsjulia/Mads.jl/src/MadsObservations.jl:399
Arguments:
madsdata::AbstractDict
: MADS problem dictionaryobskeys::AbstractVector
Mads.showparameters
— FunctionShow parameters in the MADS problem dictionary
Methods:
Mads.showparameters(madsdata::AbstractDict)
:/home/travis/build/madsjulia/Mads.jl/src/MadsParameters.jl:565
Mads.showparameters(madsdata::AbstractDict, parkeys::AbstractVector)
:/home/travis/build/madsjulia/Mads.jl/src/MadsParameters.jl:565
Mads.showparameters(madsdata::AbstractDict, parkeys::AbstractVector, all::Bool)
:/home/travis/build/madsjulia/Mads.jl/src/MadsParameters.jl:565
Mads.showparameters(madsdata::AbstractDict, result::AbstractDict)
:/home/travis/build/madsjulia/Mads.jl/src/MadsParameters.jl:560
Arguments:
all::Bool
madsdata::AbstractDict
: MADS problem dictionaryparkeys::AbstractVector
result::AbstractDict
Mads.sinetransform
— FunctionSine transformation of model parameters
Methods:
Mads.sinetransform(madsdata::AbstractDict, params::AbstractVector)
:/home/travis/build/madsjulia/Mads.jl/src/MadsSineTransformations.jl:33
Mads.sinetransform(sineparams::AbstractVector, lowerbounds::AbstractVector, upperbounds::AbstractVector, indexlogtransformed::AbstractVector)
:/home/travis/build/madsjulia/Mads.jl/src/MadsSineTransformations.jl:43
Arguments:
indexlogtransformed::AbstractVector
: index vector of log-transformed parameterslowerbounds::AbstractVector
: lower boundsmadsdata::AbstractDict
: MADS problem dictionaryparams::AbstractVector
sineparams::AbstractVector
: model parametersupperbounds::AbstractVector
: upper bounds
Returns:
- Sine transformation of model parameters
Mads.sinetransformfunction
— MethodSine transformation of a function
Methods:
Mads.sinetransformfunction(f::Function, lowerbounds::AbstractVector, upperbounds::AbstractVector, indexlogtransformed::AbstractVector)
:/home/travis/build/madsjulia/Mads.jl/src/MadsSineTransformations.jl:77
Arguments:
f::Function
: functionindexlogtransformed::AbstractVector
: index vector of log-transformed parameterslowerbounds::AbstractVector
: lower boundsupperbounds::AbstractVector
: upper bounds
Returns:
- Sine transformation
Mads.sinetransformgradient
— MethodSine transformation of a gradient function
Methods:
Mads.sinetransformgradient(g::Function, lowerbounds::AbstractVector, upperbounds::AbstractVector, indexlogtransformed::AbstractVector; sindx)
:/home/travis/build/madsjulia/Mads.jl/src/MadsSineTransformations.jl:98
Arguments:
g::Function
: gradient functionindexlogtransformed::AbstractVector
: index vector of log-transformed parameterslowerbounds::AbstractVector
: vector with parameter lower boundsupperbounds::AbstractVector
: vector with parameter upper bounds
Keywords:
sindx
: sin-space parameter step applied to compute numerical derivatives [default=0.1
]
Returns:
- Sine transformation of a gradient function
Mads.sphericalcov
— MethodSpherical spatial covariance function
Methods:
Mads.sphericalcov(h::Number, maxcov::Number, scale::Number)
:/home/travis/build/madsjulia/Mads.jl/src/MadsKriging.jl:45
Arguments:
h::Number
: separation distancemaxcov::Number
: max covariancescale::Number
: scale
Returns:
- covariance
Mads.sphericalvariogram
— MethodSpherical variogram
Methods:
Mads.sphericalvariogram(h::Number, sill::Number, range::Number, nugget::Number)
:/home/travis/build/madsjulia/Mads.jl/src/MadsKriging.jl:60
Arguments:
h::Number
: separation distancenugget::Number
: nuggetrange::Number
: rangesill::Number
: sill
Returns:
- Spherical variogram
Mads.sprintf
— MethodConvert @Printf.sprintf
macro into sprintf
function
Mads.status
— FunctionStatus of Mads modules
Methods:
Mads.status(; git, gitmore)
:/home/travis/build/madsjulia/Mads.jl/src/MadsModules.jl:280
Mads.status(madsmodule::AbstractString; git, gitmore)
:/home/travis/build/madsjulia/Mads.jl/src/MadsModules.jl:285
Arguments:
madsmodule::AbstractString
: mads module
Keywords:
git
: use git [default=true
orMads.madsgit
]gitmore
: use even more git [default=false
]
Returns:
true
orfalse
Mads.stderrcaptureoff
— MethodRestore stderr
Methods:
Mads.stderrcaptureoff()
:/home/travis/build/madsjulia/Mads.jl/src/MadsCapture.jl:137
Returns:
- standered error
Mads.stderrcaptureon
— MethodRedirect stderr to a reader
Methods:
Mads.stderrcaptureon()
:/home/travis/build/madsjulia/Mads.jl/src/MadsCapture.jl:118
Mads.stdoutcaptureoff
— MethodRestore stdout
Methods:
Mads.stdoutcaptureoff()
:/home/travis/build/madsjulia/Mads.jl/src/MadsCapture.jl:103
Returns:
- standered output
Mads.stdoutcaptureon
— MethodRedirect stdout to a reader
Methods:
Mads.stdoutcaptureon()
:/home/travis/build/madsjulia/Mads.jl/src/MadsCapture.jl:84
Mads.stdouterrcaptureoff
— MethodRestore stdout & stderr
Methods:
Mads.stdouterrcaptureoff()
:/home/travis/build/madsjulia/Mads.jl/src/MadsCapture.jl:168
Returns:
- standered output amd standered error
Mads.stdouterrcaptureon
— MethodRedirect stdout & stderr to readers
Methods:
Mads.stdouterrcaptureon()
:/home/travis/build/madsjulia/Mads.jl/src/MadsCapture.jl:152
Mads.svrdump
— MethodDump SVR models in files
Methods:
Mads.svrdump(svrmodel::Vector{SVR.svmmodel}, rootname::AbstractString, numberofsamples::Int64)
:/home/travis/build/madsjulia/Mads.jl/src/MadsSVR.jl:136
Arguments:
numberofsamples::Int64
: number of samplesrootname::AbstractString
: root namesvrmodel::Vector{SVR.svmmodel}
: array of SVR models
Mads.svrfree
— MethodFree SVR
Methods:
Mads.svrfree(svrmodel::Vector{SVR.svmmodel})
:/home/travis/build/madsjulia/Mads.jl/src/MadsSVR.jl:118
Arguments:
svrmodel::Vector{SVR.svmmodel}
: array of SVR models
Mads.svrload
— MethodLoad SVR models from files
Methods:
Mads.svrload(npred::Int64, rootname::AbstractString, numberofsamples::Int64)
:/home/travis/build/madsjulia/Mads.jl/src/MadsSVR.jl:159
Arguments:
npred::Int64
: number of model predictionsnumberofsamples::Int64
: number of samplesrootname::AbstractString
: root name
Returns:
- Array of SVR models for each model prediction
Mads.svrprediction
— FunctionPredict SVR
Methods:
Mads.svrprediction(svrmodel::Vector{SVR.svmmodel}, paramarray::Matrix{Float64})
:/home/travis/build/madsjulia/Mads.jl/src/MadsSVR.jl:92
Arguments:
paramarray::Matrix{Float64}
: parameter arraysvrmodel::Vector{SVR.svmmodel}
: array of SVR models
Returns:
- SVR predicted observations (dependent variables) for a given set of parameters (independent variables)
Mads.svrtraining
— FunctionTrain SVR
Methods:
Mads.svrtraining(madsdata::AbstractDict)
:/home/travis/build/madsjulia/Mads.jl/src/MadsSVR.jl:37
Mads.svrtraining(madsdata::AbstractDict, numberofsamples::Integer; addminmax, kw...)
:/home/travis/build/madsjulia/Mads.jl/src/MadsSVR.jl:37
Mads.svrtraining(madsdata::AbstractDict, paramarray::Matrix{Float64}; check, savesvr, addminmax, svm_type, kernel_type, degree, gamma, coef0, C, nu, cache_size, epsilon, shrinking, probability, verbose, tol)
:/home/travis/build/madsjulia/Mads.jl/src/MadsSVR.jl:4
Arguments:
madsdata::AbstractDict
: MADS problem dictionarynumberofsamples::Integer
: number of random samples in the training set [default=100
]paramarray::Matrix{Float64}
Keywords:
C
: cost; penalty parameter of the error term [default=1000.0
]addminmax
: add parameter minimum / maximum range values in the training set [default=true
]cache_size
: size of the kernel cache [default=100.0
]check
: check SVR performance [default=false
]coef0
: independent term in kernel function; important only in POLY and SIGMOND kernel types [default=0
]degree
: degree of the polynomial kernel [default=3
]epsilon
: epsilon in the EPSILON_SVR model; defines an epsilon-tube within which no penalty is associated in the training loss function with points predicted within a distance epsilon from the actual value [default=0.001
]gamma
: coefficient for RBF, POLY and SIGMOND kernel types [default=1/numberofsamples
]kernel_type
: kernel type[default=SVR.RBF
]nu
: upper bound on the fraction of training errors / lower bound of the fraction of support vectors; acceptable range (0, 1]; applied if NU_SVR model [default=0.5
]probability
: train to estimate probabilities [default=false
]savesvr
: save SVR models [default=false
]shrinking
: apply shrinking heuristic [default=true
]svm_type
: SVM type [default=SVR.EPSILON_SVR
]tol
: tolerance of termination criterion [default=0.001
]verbose
: verbose output [default=false
]
Returns:
- Array of SVR models
Mads.symlinkdir
— MethodCreate a symbolic link of a file filename
in a directory dirtarget
Methods:
Mads.symlinkdir(filename::AbstractString, dirtarget::AbstractString, dirsource::AbstractString)
:/home/travis/build/madsjulia/Mads.jl/src/MadsIO.jl:1360
Arguments:
dirsource::AbstractString
dirtarget::AbstractString
: target directoryfilename::AbstractString
: file name
Mads.symlinkdirfiles
— MethodCreate a symbolic link of all the files in a directory dirsource
in a directory dirtarget
Methods:
Mads.symlinkdirfiles(dirsource::AbstractString, dirtarget::AbstractString)
:/home/travis/build/madsjulia/Mads.jl/src/MadsIO.jl:1342
Arguments:
dirsource::AbstractString
: source directorydirtarget::AbstractString
: target directory
Mads.tag
— FunctionTag Mads modules with a default argument :patch
Methods:
Mads.tag()
:/home/travis/build/madsjulia/Mads.jl/src/MadsModules.jl:350
Mads.tag(madsmodule::AbstractString)
:/home/travis/build/madsjulia/Mads.jl/src/MadsModules.jl:355
Mads.tag(madsmodule::AbstractString, versionsym::Symbol)
:/home/travis/build/madsjulia/Mads.jl/src/MadsModules.jl:355
Mads.tag(versionsym::Symbol)
:/home/travis/build/madsjulia/Mads.jl/src/MadsModules.jl:350
Arguments:
madsmodule::AbstractString
: mads module nameversionsym::Symbol
: version symbol [default=:patch
]
Mads.test
— FunctionPerform Mads tests (the tests will be in parallel if processors are defined; tests use the current Mads version in the workspace; reload("Mads.jl")
if needed)
Methods:
Mads.test()
:/home/travis/build/madsjulia/Mads.jl/src/MadsTest.jl:38
Mads.test(testname::AbstractString; madstest, plotting)
:/home/travis/build/madsjulia/Mads.jl/src/MadsTest.jl:38
Arguments:
testname::AbstractString
: name of the test to execute; module or example
Keywords:
madstest
: test Mads [default=true
]plotting
Mads.testj
— FunctionExecute Mads tests using Julia Pkg.test (the default Pkg.test in Julia is executed in serial)
Methods:
Mads.testj()
:/home/travis/build/madsjulia/Mads.jl/src/MadsTest.jl:9
Mads.testj(coverage::Bool)
:/home/travis/build/madsjulia/Mads.jl/src/MadsTest.jl:9
Arguments:
coverage::Bool
: [default=false
]
Mads.transposematrix
— MethodTranspose non-numeric matrix
Methods:
Mads.transposematrix(a::AbstractMatrix)
:/home/travis/build/madsjulia/Mads.jl/src/MadsHelpers.jl:428
Arguments:
a::AbstractMatrix
: matrix
Mads.transposevector
— MethodTranspose non-numeric vector
Methods:
Mads.transposevector(a::AbstractVector)
:/home/travis/build/madsjulia/Mads.jl/src/MadsHelpers.jl:418
Arguments:
a::AbstractVector
: vector
Mads.untag
— MethodUntag specific version
Methods:
Mads.untag(madsmodule::AbstractString, version::AbstractString)
:/home/travis/build/madsjulia/Mads.jl/src/MadsModules.jl:390
Arguments:
madsmodule::AbstractString
: mads module nameversion::AbstractString
: version
Mads.vectoroff
— MethodMADS vector calls off
Methods:
Mads.vectoroff()
:/home/travis/build/madsjulia/Mads.jl/src/MadsHelpers.jl:57
Mads.vectoron
— MethodMADS vector calls on
Methods:
Mads.vectoron()
:/home/travis/build/madsjulia/Mads.jl/src/MadsHelpers.jl:48
Mads.veryquietoff
— MethodMake MADS not very quiet
Methods:
Mads.veryquietoff()
:/home/travis/build/madsjulia/Mads.jl/src/MadsHelpers.jl:130
Mads.veryquieton
— MethodMake MADS very quiet
Methods:
Mads.veryquieton()
:/home/travis/build/madsjulia/Mads.jl/src/MadsHelpers.jl:121
Mads.void2nan!
— MethodConvert Nothing's into NaN's in a dictionary
Methods:
Mads.void2nan!(dict::AbstractDict)
:/home/travis/build/madsjulia/Mads.jl/src/MadsSensitivityAnalysis.jl:1068
Arguments:
dict::AbstractDict
: dictionary
Mads.weightedstats
— MethodGet weighted mean and variance samples
Methods:
Mads.weightedstats(samples::Array, llhoods::AbstractVector)
:/home/travis/build/madsjulia/Mads.jl/src/MadsSensitivityAnalysis.jl:388
Arguments:
llhoods::AbstractVector
: vector of log-likelihoodssamples::Array
: array of samples
Returns:
- vector of sample means
- vector of sample variances
Mads.welloff!
— MethodTurn off a specific well in the MADS problem dictionary
Methods:
Mads.welloff!(madsdata::AbstractDict, wellname::AbstractString)
:/home/travis/build/madsjulia/Mads.jl/src/MadsObservations.jl:632
Arguments:
madsdata::AbstractDict
: MADS problem dictionarywellname::AbstractString
: name of the well to be turned off
Mads.wellon!
— MethodTurn on a specific well in the MADS problem dictionary
Methods:
Mads.wellon!(madsdata::AbstractDict, wellname::AbstractString)
:/home/travis/build/madsjulia/Mads.jl/src/MadsObservations.jl:574
Arguments:
madsdata::AbstractDict
: MADS problem dictionarywellname::AbstractString
: name of the well to be turned on
Mads.wellon!
— MethodTurn on a specific well in the MADS problem dictionary
Methods:
Mads.wellon!(madsdata::AbstractDict, rx::Regex)
:/home/travis/build/madsjulia/Mads.jl/src/MadsObservations.jl:596
Mads.wellon!(madsdata::AbstractDict, wellname::AbstractString)
:/home/travis/build/madsjulia/Mads.jl/src/MadsObservations.jl:574
Arguments:
madsdata::AbstractDict
: MADS problem dictionaryrx::Regex
wellname::AbstractString
: name of the well to be turned on
Mads.wells2observations!
— MethodConvert Wells
class to Observations
class in the MADS problem dictionary
Methods:
Mads.wells2observations!(madsdata::AbstractDict)
:/home/travis/build/madsjulia/Mads.jl/src/MadsObservations.jl:687
Arguments:
madsdata::AbstractDict
: MADS problem dictionary
Mads.writeparameters
— FunctionWrite model parameters
Methods:
Mads.writeparameters(madsdata::AbstractDict)
:/home/travis/build/madsjulia/Mads.jl/src/MadsIO.jl:1076
Mads.writeparameters(madsdata::AbstractDict, parameters::AbstractDict; respect_space)
:/home/travis/build/madsjulia/Mads.jl/src/MadsIO.jl:1076
Arguments:
madsdata::AbstractDict
: MADS problem dictionaryparameters::AbstractDict
: parameters
Keywords:
respect_space
: respect provided space in the template file to fit model parameters [default=false
]
Mads.writeparametersviatemplate
— MethodWrite parameters
via MADS template (templatefilename
) to an output file (outputfilename
)
Methods:
Mads.writeparametersviatemplate(parameters, templatefilename, outputfilename; respect_space)
:/home/travis/build/madsjulia/Mads.jl/src/MadsIO.jl:1020
Arguments:
outputfilename
: output file nameparameters
: parameterstemplatefilename
: tmplate file name
Keywords:
respect_space
: respect provided space in the template file to fit model parameters [default=false
]
Mads.@stderrcapture
— MacroCapture stderr of a block
Mads.@stdoutcapture
— MacroCapture stdout of a block
Mads.@stdouterrcapture
— MacroCapture stderr & stderr of a block
Mads.@tryimport
— MacroTry to import a module in Mads
Mads.@tryimportmain
— MacroTry to import a module in Main
Mads.MadsModel
— TypeMadsModel type applied for MathOptInterface analyses