Skip to content

Contaminant Source Identification

Contaminant Source Identification using Unsupervised Machine Learning

Machine Learning can be effectively applied to identify and characterize sources that are causing signals observed at monitoring points.

Recently we have performed a series of analyses related to contaminant source identification.

Research Papers

  • Vesselinov, V.V., Alexandrov, B.S., O'Malley, D., Nonnegative Tensor Factorization for Contaminant Source Identification, Journal of Contaminant Hydrology, 10.1016/j.jconhyd.2018.11.010, 2018. PDF
  • Iliev, F.L., Stanev, V.G., Vesselinov, V.V., Alexandrov, B.S., Nonnegative Matrix Factorization for identification of unknown number of sources emitting delayed signals PLoS ONE, 10.1371/journal.pone.0193974. 2018. PDF
  • Stanev, V.G., Iliev, F.L., Hansen, S.K., Vesselinov, V.V., Alexandrov, B.S., Identification of the release sources in advection-diffusion system by machine learning combined with Green function inverse method, Applied Mathematical Modelling, 10.1016/j.apm.2018.03.006, 2018. PDF
  • Vesselinov, V.V., O'Malley, D., Alexandrov, B.S., Contaminant source identification using semi-supervised machine learning, Journal of Contaminant Hydrology, 10.1016/j.jconhyd.2017.11.002, 2017. PDF


  • Vesselinov, V.V., Alexandrov, B.A, Model-free Source Identification, AGU Fall Meeting, San Francisco, CA, 2014. PDF>