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TSALLIS ENTROPY & q-GAUSSIANS
Tsallis entropy [1] for a discrete system:

Sq =
1

q − 1

(
1−

∑
i=1

pqi

)

Tsallis entropy for a continuous random variable:

Sq(X) =
1

q − 1

(
1−

∫ ∞
−∞

[fX(x)]
q
dx

)
The q-Gaussian distribution,

f(x) =

√
β

Cq
eq(−βx2)

where
eq(x) = [1 + (1− q)x]

1/(1−q)

maximizes the Tsallis entropy for a fixed second mo-
ment (

〈
X2
〉
q

= σ2) of the q-expectation

〈g(X)〉q ≡
∫∞
−∞ g(x) [fX(x)]

q
dx∫∞

−∞ [fX(x)]
q
dx

,

DISPERSION COEFFICIENT PDF
Consider the stochastic differential equation

dX(t) = vdt+
√
DdB(t)

where B(t) is a Brownian motion, and D is a ran-
dom variable that is independent of B(t). What dis-
tribution of D maximizes the Tsallis entropy of the
dispersion? This one (ν = q−3

1−q ):

fD(x) =
1

2ν/2+1Γ(ν/2)
(D2

0ν)ν/2x−ν−1e−D
2
0ν/2x
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q = 1.5 VELOCITY TRANSITIONS
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PROPERTIES OF ENTROPY
The Boltzmann-Gibbs entropy results from the

following four properties.

1. Entropy is continuous with respect to the prob-
ability distribution of states.

2. Entropy is maximal for the uniform distribu-
tion.

3. Adding a state with zero probability does not
alter the entropy.

4. The entropy of a joint system A+B (where
A+B denotes the system obtained by joining
the disjoint systems A and B) is the entropy of
A plus the expected value of the entropy of B
conditioned on A.

By dropping the physically dubious 4th property, we
obtain a broader set of entropies that includes the
Tsallis entropy.

CONCLUSIONS
• Gaussian plumes are rarely (or never) observed in

natural porous media, therefore dispersion is not
maximizing the Boltzmann-Gibbs entropy

• We should look to maximize alternative forms of
entropy

• A random dispersion coefficient can be used to
maximize Tsallis entropy

• The random dispersion coefficient can be used to
inform spatially Markovian models [3] (see fig-
ures to the left)

• The random dispersion coefficient provides a
maximum-entropy motivation for Lévy disper-
sion [4] in porous media
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